p7. 1
a) Low frequency

Midband:

b) SCTC:

$$
\begin{aligned}
& C_{1}: R_{1}, q=R_{I}+\left[R_{1}\left\|R_{2}\right\|\left(r_{\pi}+\left(1+i_{m} K_{\pi}\right) R_{E}\right]\right. \\
& \left.C_{3}: R_{3}, \text { q }=R_{q}+\text { (Rqul } \frac{1}{\text { gm }}\right) \\
& C_{1}=4.7 \mu F_{1}, C_{3}=10 \mu F_{1}, \quad R_{1}=100 \mathrm{k} \Omega, R_{2}=300 \mathrm{k} \Omega \\
& R_{3}=13 \mathrm{k} \Omega, R_{2}=2 k \Omega, R_{3}=100 k \Omega \\
& g_{m}=\frac{I_{c}}{V_{1}}: \beta_{0}=g_{m} V_{\pi}=100, Z_{c}=0.25 \mathrm{~mA}, U_{c l}=12 \mathrm{~V} \\
& F_{L}=\left(\frac{1}{\left.R_{1_{1}+\frac{q}{} C_{1}}+\frac{1}{R_{3_{1, q} C_{3}}}\right) \frac{1}{2 \pi} \approx 0.62348}\right.
\end{aligned}
$$

P2. $2 \quad w_{L}=\frac{1}{R_{\text {ieq }} G}+\frac{1}{R_{3 \text { eg }}^{3}}=1=2 \pi f_{L}=20 \pi$

$$
C_{3}=\frac{\left(20 \pi-\frac{1}{R_{103} a}\right)^{-1}}{R_{3,2}} \approx 0.167 \mathrm{NF}
$$

p 2.3

$$
\begin{aligned}
& R_{\bar{I}_{n}}=\frac{V_{i n}}{i_{i n}}=\frac{R}{1-A(S)} \\
& i_{i_{n}}=\frac{V_{i n}-V_{o_{n} A}}{R}=\frac{V_{\text {in }}(1-A \text { IS }}{R}
\end{aligned}
$$

012.4

$$
\begin{aligned}
& I_{c}=100 \times \frac{3-0.7}{15 \mathrm{~K}+101 \times 13 \mathrm{~K}}=0.166 \mathrm{~mA} \\
& V_{C z}=12-43 \mathrm{~K} \times I_{c}-13 \mathrm{~K} I_{t}=2.68 \mathrm{~V} \\
& g_{m}=\frac{1}{25 m} \times 0.166 \mathrm{~m}=6.64 \mathrm{mS} \\
& r_{\pi}=\frac{100}{6.64 \mathrm{~m}}=15.1 \mathrm{~K} \\
& C_{\pi}=\frac{9 \mathrm{~m}}{\omega 1}-C_{\mu}=\frac{6.64 \mathrm{~m}}{2 \pi \times 310 \times 10^{6}}-0.5 \times 10^{12}=3.52 \mathrm{pf}
\end{aligned}
$$

OC TC
From Table 16.2

SCTL

$$
\begin{aligned}
& R_{15}=100+75 k 11[300+15.1 k+101 \times 3 k]=60.8 k \Omega \\
& R_{23}=10 \mathrm{k} 11\left(3 k+\frac{15.1 k+99.9}{10}\right)=2.4 k \Omega \\
& R_{35}=43 \mathrm{k}+100 \mathrm{k}=143 \mathrm{k} \Omega \\
& f_{2} \approx \frac{1}{2 \pi}\left[\frac{1}{(60.8 k)(1 \mu \mathrm{ka)}}+\frac{1}{(2.4 \mathrm{k})(22 \mu)}+\frac{1}{(193 \mathrm{k})(0.1 \mu)}\right] \\
&=43.9 \mathrm{~Hz}
\end{aligned}
$$

$$
A_{\text {mid }}=-\frac{60.3 \mathrm{k}}{60.8 \mathrm{k}} \times \frac{(6.64 \mathrm{~m})(30.1 \mathrm{k})}{1+(6.64 \mathrm{~m})(3 \mathrm{k})}=-9.5
$$

$$
G B W=9.54 \times(9.29 M-63.9)=88442
$$

$$
\begin{aligned}
& r_{\pi 0}=r_{\pi}\left\|\left[r_{x}+\left(R_{I} \| R_{B}\right)\right], R_{B}=R_{1}\right\| R_{2} \\
& =15.1 \mathrm{~K} 11(300+(1001175 \mathrm{~K}))=390 \Omega \\
& C_{T B}=\frac{C_{T}}{1+g_{m} R_{E}}+C_{M}\left(1+\frac{g_{m} R_{L}}{1+g_{m z} R_{z}}\right)+\left(C_{U}+C_{c}\right) \frac{R_{L}}{V_{\pi o}} \\
& =\frac{3.52 p}{1+6.64 m \times 3 k}+0.5 p\left[\left(1+\frac{6.64 \mathrm{~m} \times 30.1 \mathrm{k}}{1+6.64 m \times 3 \mathrm{k}}\right)+\left(\frac{30.1 \mathrm{k} \Omega}{390}\right)\right] \\
& \approx 44 \mathrm{pF} \\
& f_{H}=\frac{1}{2 \pi(390)\left(4 \varphi_{p}\right)}=9.20 \mathrm{MHz}
\end{aligned}
$$

(a)

KL:

$$
\begin{aligned}
& \therefore i_{n}+g_{m} V_{b e}=\frac{V_{m}-V_{b e}}{R_{E} \| r_{0}}, \quad U_{b e}=i i_{n} r_{\pi} \\
& i_{i_{n}}\left(1+g_{m} r_{\pi}+\frac{r_{\pi}}{R_{\text {ElI }}}\right)=\frac{V_{i_{n}}}{R_{\text {Ell }}} \\
& R_{i n}=\frac{v T_{n}}{i_{i n}}=r_{\pi}+\left(1+g_{m} r_{\pi}\right)\left(R_{z} \| r_{0}\right) \\
& i_{\text {int }}=g_{m} V_{b e}-\frac{\left(U_{i n}-U_{b e}\right)}{r_{e}} \\
& {\left[U_{b e}=i_{i n} r_{\pi}=\frac{r_{\pi} V_{n}}{r_{\pi}+\left(1+\beta_{0}\right)\left(R_{e l l} k_{0}\right)}=\frac{V_{\pi} V_{n}}{R_{\text {in }}}\right.} \\
& \rightarrow \Lambda_{\text {out }}=\operatorname{Vin}\left(\frac{\beta_{0}}{R_{i n}}-\frac{1}{r_{0}}+\frac{r_{\pi}}{R_{\text {in }} r_{0}}\right) \\
& G_{m}=\frac{i_{\text {out }}}{v_{\text {in }}}=\frac{\beta_{0} r_{0}-R_{\text {in }}+r_{\pi}}{k_{0} R_{\text {in }}} \\
& =\frac{\beta_{0} r_{0}-\left(1+\beta_{0}\right)\left(R_{E} \| r_{0}\right)}{r_{0}\left(r_{\pi}\left(1+\beta_{0}\right)\left(R_{E} \| r_{0}\right)\right)}
\end{aligned}
$$

$$
\begin{aligned}
& R_{\text {out }}=\frac{V_{t}}{i_{t}}=\sqrt{r_{0}\left[1+g_{m}\left(V_{\pi}+R_{E}\right)\right]+\left(t \pi \| R_{E}\right)}
\end{aligned}
$$

b)

$$
\begin{aligned}
R_{\pi} & =r_{\pi}+\left(1+g_{m} r_{\pi}\right)\left(R_{E} \|_{0}\right) \\
& \left.\approx r_{0}+\left(1+g_{m} r_{\pi}\right) R_{E}\left(r_{0}\right) R_{z}\right) \\
& \approx r_{\pi}+g_{m} r_{\pi} R_{E}\left(\beta_{0}=g_{m} r_{\pi}>1\right) \\
& \left.\approx r_{\pi}+1+g_{m} R_{z}\right)\left.\right|_{\neq 1} \\
G_{M} & =\frac{\beta_{0} r_{0}-\left(1+\beta_{0}\right)\left(R_{E} \| R_{0}\right)}{r_{0}\left(r_{\pi}+\left(1+\beta_{0}\right)\left(R_{z} \| r_{0}\right)\right.} \\
& \approx \frac{\beta_{0} r_{0}-\beta_{0} R_{E}}{r_{0}\left(r_{\pi}+\beta_{0} R_{z}\right)}\left(r_{0}>R_{z}, \beta_{0} \gg\right) \\
& \approx \frac{\beta_{0}\left(r_{0}-R_{z}\right)}{r_{0}\left(r_{\pi}+\beta_{0} R_{z}\right)} \approx \frac{\beta_{0} r_{0}}{r_{0}\left(r_{\pi}+\beta_{0} R_{z}\right)}\left(r_{0}>R_{E},\right. \\
& \approx \frac{g_{m} r_{t}}{r_{t}+g_{m} r_{t} R_{z}} \approx \sqrt{1+g_{m} R_{z}}
\end{aligned}
$$

conditions used: $r_{0} 川 R_{E}$ \& $\beta_{0}=g_{m} \mid \pi 川 1$
c)

$$
\begin{aligned}
R_{0 n t} & =r_{0}\left[1+g_{m}\left(r_{\pi} / p_{E}\right)\right]+\left(r_{\pi} \| R_{E}\right) \\
& \approx r_{0}\left[1+g_{m} R_{E}\right]+R_{G} \quad\left(r_{\pi}>R_{E}\right) \\
& \approx r_{0}\left(1+g_{m} R_{E}\right) \quad\left(r_{0}>R_{E}\right)
\end{aligned}
$$

p7.6
Tgnored ro
a)

$$
\begin{aligned}
A_{V} & =\frac{V_{A}}{V_{\text {in }}} \times \frac{V_{\text {ont }}}{V_{A}}=\frac{R_{\text {in }}}{R_{B}+R_{\text {in }}} \times\left(-G_{m} R_{\text {ont }}\right) \\
& \approx \frac{r_{\pi}\left(1+I_{m} R_{E}\right)}{R_{B}+r_{\pi}\left(1+g_{m} R_{z}\right)} \times \frac{I_{C}}{1+I_{m} R_{E}}
\end{aligned}
$$

b)

$$
\left.\begin{array}{l}
C_{A}=C_{\pi}+C_{\mu}\left(1-A_{r}\right) \\
C_{B}=C_{\mu}\left(1-A_{r}^{-1}\right)
\end{array}\right\} A_{r} \text { trom part a) }
$$

\#
C)

$$
\left.\begin{array}{rl}
R_{A_{1} \text { eq }} & =R_{B \|} r_{\pi} \\
R_{B, Q} & =R_{C} \\
f_{H} & =\frac{1}{2 \pi}\left(\frac{1}{R_{A_{1} \text { eq } C A}+R_{B_{1}, q} C B}\right.
\end{array}\right)
$$

d)

$$
\begin{aligned}
& A_{v} \approx-1389 \mathrm{u} \\
& f_{n} \approx 75 k H z
\end{aligned}
$$

(Sre attached)

$$
\begin{align*}
& \mathrm{KCL} \quad \dot{\Lambda}_{1}=q_{n} V_{b c}+\frac{b_{\text {ont }}}{R_{c}} \\
& \text { kl } \frac{v_{\text {In }}-u_{b e}}{R_{B}}=i_{1}+\frac{v_{b e}}{v_{\pi / u} \frac{1}{c_{\pi}}} \\
& \begin{aligned}
\frac{V_{\text {In }}}{R_{B}} & =g_{m} V_{b e}+\frac{V_{\text {ont }}}{R_{c}}+\frac{V_{b e}}{V_{\pi}+\frac{1}{s+\pi}}+\frac{V_{b e}}{R_{B}} \\
& =V_{b c}\left(g_{m}+\frac{1}{V_{\pi} \|_{1} \frac{1}{s b \pi}}+\frac{1}{R_{B}}\right)+\frac{V_{\text {ont }}}{R_{c}}
\end{aligned} \tag{1}
\end{align*}
$$

ohm's Law $U_{b e}-\frac{\dot{I}_{1}}{5 c_{\mu}}=V_{\text {out }}$

$$
\begin{align*}
& V_{b e}=V_{o n t}+\frac{g_{m}}{S C_{\mu}} V_{b c}+\frac{V_{o n t}}{S R_{c} C_{\mu}} \\
&\left.V_{b e}\left(1-\frac{9 m}{S C_{\mu}}\right)=V_{\text {ont }}+1+\frac{S_{R} C_{\mu}}{S R_{c}}\right) \\
&=\frac{S C_{\mu}-g_{m}}{S C_{\mu}} \\
& \Rightarrow V_{b e}=V_{\text {out }}\left(\frac{S R_{c} C_{\mu}+1}{S R_{c} C_{\mu}}\right) \frac{S C_{\mu}}{S C_{\mu}-g_{m}} \\
&=V_{\text {ont }} \frac{\left(S R_{c} C \mu+1\right)}{R_{c}\left(S C_{\mu}-g_{m}\right)} \tag{2}
\end{align*}
$$

Plug (2) into ©

$$
\begin{aligned}
& \frac{V_{\text {In }}}{R_{B}}=V_{\text {ont }}\left[\frac{S R_{c} C_{M}+1}{R_{C}\left(s \sin -g_{m}\right)}\left(g_{m}+\frac{1}{r_{n} \| \frac{1}{S C \pi}}+\frac{1}{R_{B}}\right)+\frac{1}{R_{C}}\right] \\
& \frac{V_{0 n}}{V_{\text {In }}}=\left\{R_{B}[\text { f) plots attached. }\right.
\end{aligned}
$$

\%

\% \#1
\%

R1 = 100e3;
R2 = 300e3;
Ri = 2e3;
Re = 13e3;
R7 = 100e3;
$B f=100 ; \%$ current gain, A / A
$A f=B f /(B f+1)$;
Vt $=0.026 ; \%$ thermal voltage @ room temp.
Ic $=0.25 \mathrm{e}-3$;
gm = Ic/Vt;
rpi = Bf/gm;
\%
\% Midband gain
\%
Rin $=\left(1 / R 1+1 / R 2+1 /\left(r p i+(1+B f)^{* R e}\right)\right)^{\wedge}-1$;
RL $=(1 / R e+1 / R 7)^{\wedge}-1$;
Gain $=(\operatorname{Rin} /(R i+R i n)) *((1+B f) * R L /(r p i+(1+B f) * R L))$
\%
\% SCTC - fL
\%

C1 $=4.7 e-6$;
$C 3=10 \mathrm{e}-6$;
Re_eq1 = Ri+Rin;
Re_eq3 $=R 7+\left((1 / R e+g m)^{\wedge-1}\right)$;
$F L=\left(1 /\left(R e _e q 1 * C 1\right)+1 /\left(R e _e q 3 * C 3\right)\right) /(2 * p i) \% H z$
\%
\% \#2
\%

C3 = ((20*pi - (1/(Re_eq1*C1)))^-1)/Re_eq3
clc;
\%
\% \#4
\%

Vcc = 12;
R1 = 10e3;
R2 = 30e3;
Ri = 250;
rx = 350;
Re1 = 200;
Re2 = 1100;
Rc = 4.3e3;
R3 = 47e3;
Vbeon $=0.7$;

```
Bf = 100; % current gain, A/A
Af = Bf/(Bf+1);
Vt = 0.026; % thermal voltage @ room temp.
```

\% DC bias

```
\(\mathrm{Vb}=\mathrm{R} 1^{*} \mathrm{Vcc} /(\mathrm{R} 1+\mathrm{R} 2)\)
\(\mathrm{Ve}=\mathrm{Vb}-\mathrm{Vbeon}\)
Ie \(=\mathrm{Ve} /(\mathrm{Re} 1+\mathrm{Re} 2)\);
Ic \(=A f^{*}\) Ie
Vc = Vcc - (Ic*Rc) \% check for FAR mode
gm = Ic/Vt;
rpi = Bf/gm;
```

\%
\% Midband gain
\%
$\operatorname{Rin}=(1 / R 1+1 / R 2+1 /(r p i+r x+(1+B f) * R e 1))^{\wedge}-1 ;$
Rout $=(1 / R c+1 / R 3)^{\wedge}-1$;
Gain $=-(g m /(1+g m * R e 1))^{*}(R o u t) *(R i n /(R i+R i n))$
\%
\% SCTC - fL
\%

```
\(C 1=5 e-6\);
C2 \(=1 e-6\);
C3 = 4.7e-6;
Re_eq1 = Ri+Rin;
Re_eq2 = R3+Rc;
Re_eq3 = Re1 + (1/gm);
\(F L=\left(1 /\left(R e \_e q 1 * C 1\right)+1 /\left(R e \_e q 2 * C 2\right)+1 /\left(R e \_e q 3 * C 3\right)\right) /\left(2^{*} p i\right) \% H z\)
```

\%
\% OCTC - fH
\%
$C u=1 e-12 ;$
ft = 200e6;
Cpi = (gm/ft) - Cu
GS=1/Ri+1/R1+1/R2;
Rs=1/GS;
Rpi_eq = 1/(1/rpi+(1+gm*Re1)/(Rs+Re1))
Rin $=1 /(1 / R i+1 / R 1+1 / R 2+1 /(r p i+r x+(1+B f) * R e 1))$;
Rout $=1 /(1 / \mathrm{Rc}+1 / \mathrm{R} 3)$;
$\mathrm{GM}=\mathrm{gm} /(1+\mathrm{gm} * \mathrm{Re} 1)$;
Ru_eq = Rin + Rout*(1+GM*Rin);
FH $=1 /\left(2^{*}\right.$ pi* $\left.^{*}\left(R p i _e q^{*} C p i+R u _e q^{*} C u\right)\right)$

```
Bf = 100; % current gain, A/A
Af = Bf/(Bf+1);
Vt = 0.026; % thermal voltage @ room temp.
```

\% DC bias

```
\(\mathrm{Vb}=\mathrm{R} 1^{*} \mathrm{Vcc} /(\mathrm{R} 1+\mathrm{R} 2)\)
\(\mathrm{Ve}=\mathrm{Vb}-\mathrm{Vbeon}\)
Ie \(=\mathrm{Ve} /(\mathrm{Re} 1+\mathrm{Re} 2)\);
Ic \(=A f^{*}\) Ie
Vc = Vcc - (Ic*Rc) \% check for FAR mode
gm = Ic/Vt;
rpi = Bf/gm;
```

\%
\% Midband gain
\%
$\operatorname{Rin}=(1 / R 1+1 / R 2+1 /(r p i+r x+(1+B f) * R e 1))^{\wedge}-1 ;$
Rout $=(1 / R c+1 / R 3)^{\wedge}-1$;
Gain $=-(g m /(1+g m * R e 1))^{*}(R o u t) *(R i n /(R i+R i n))$
\%
\% SCTC - fL
\%

```
\(C 1=5 e-6\);
C2 \(=1 e-6\);
C3 = 4.7e-6;
Re_eq1 = Ri+Rin;
Re_eq2 = R3+Rc;
Re_eq3 = Re1 + (1/gm);
\(F L=\left(1 /\left(R e \_e q 1 * C 1\right)+1 /\left(R e \_e q 2 * C 2\right)+1 /\left(R e \_e q 3 * C 3\right)\right) /\left(2^{*} p i\right) \% H z\)
```

\%
\% OCTC - fH
\%
$C u=1 e-12 ;$
ft = 200e6;
Cpi = (gm/ft) - Cu
GS=1/Ri+1/R1+1/R2;
Rs=1/GS;
Rpi_eq = 1/(1/rpi+(1+gm*Re1)/(Rs+Re1))
Rin $=1 /(1 / R i+1 / R 1+1 / R 2+1 /(r p i+r x+(1+B f) * R e 1))$;
Rout $=1 /(1 / \mathrm{Rc}+1 / \mathrm{R} 3)$;
$\mathrm{GM}=\mathrm{gm} /(1+\mathrm{gm} * \mathrm{Re} 1)$;
Ru_eq = Rin + Rout*(1+GM*Rin);
FH $=1 /\left(2^{*}\right.$ pi* $\left.^{*}\left(R p i _e q^{*} C p i+R u _e q^{*} C u\right)\right)$
\%
\% \#6
\%

Rb = 1e3;
Rc = 50e3;
Bf = 100;
$\mathrm{Cu}=2 \mathrm{e}-12$;
Cje = 0; \%no depletion cap, just consider diffusion cap for B-E junction Ic = 1e-3;
Tf = 500e-12;
Vt = 0.026;
gm = Ic/Vt;
rpi = Bf/gm;
Cpi $=$ gm*Tf;
$\mathrm{Av}=-\mathrm{gm} \mathrm{ARc}^{*}(\mathrm{rpi} /(\mathrm{Rb}+r p i))$
$\mathrm{CA}=\mathrm{Cpi}+\mathrm{Cu}^{*}(1-\mathrm{Av})$;
$C B=C u^{*}(1-(1 / A v))$;
RAeq $=(1 / R b+1 / r p i)^{\wedge}-1 ;$
RBeq = Rc;
$\mathrm{fH}=(1 /($ RAeq*CA + RBeq*CB $)) /\left(2^{*}\right.$ pi $)$
f = logspace(1,6,10000);

Gain = Av./(1+(j*f./fH));
subplot(2,1,1);
semilogx(f, 20*log10(abs(Gain)));
grid on
xlabel('frequency (Hz)');
ylabel('|Av| (dB)');
title('P7.6d');
subplot (2,1,2);
semilogx(f,angle(Gain)*180/pi);
grid on
xlabel('frequency (Hz)');
ylabel('phase(Av) (degrees)');
\%
\% \#6e
\%


```
Gain_e = 1./(Rb.*(((1+j*2*pi.*f.*Rc*Cu)./(Rc.*(j*2*pi.*f.*Cu-
gm))).*(gm+((1/rpi)+j*2*pi.*f.*Cpi)+(1/Rb))+(1/Rc)));
subplot(2,1,1);
semilogx(f,20*log10(abs(Gain)),':');
hold on
semilogx(f, 20*log10(abs(Gain_e)));
hold off
grid on
xlabel('frequency (Hz)');
ylabel('|Av| (dB)');
title('P7.6e');
legend('1st order approx','exact expression');
subplot(2,1,2);
semilogx(f,angle(Gain)*180/pi,':');
hold on
semilogx(f,angle(Gain_e)*180/pi);
hold off
grid on
xlabel('frequency (Hz)');
ylabel('phase(Av) (degrees)');
legend('1st order approx','exact expression');
```

