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What is an embedded system? 
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Embedded, everywhere 
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Embedded, Everywhere - Fitbit 
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What is driving the 

embedded everywhere explosion? 
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Outline 
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Course Description/Overview 
 
Tools Overview/ISA start 
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Moore’s Law (a statement about economics): 
IC transistor count doubles every 18-24 mo 

Photo Credit: Intel 
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The number of computers per person grows 
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Computer volume shrinks by 100x every decade 
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Price falls dramatically, and enables new applications 
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     “Roughly every decade a new, 
lower priced computer class 

forms based on a new 
programming platform, 
network, and interface 

resulting in new usage and 
the establishment of a new 

industry.” 
 

- Gordon Bell [1972,2008] 

Bell’s Law: A new computer class every decade 
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Technology Scaling 
•  Moore’s Law 

–  Made transistors cheap 

•  Dennard’s Scaling 
–  Made them fast 
–  And low-power 

•  Result 
–  Holding #T’s constant 

•  Exponentially lower cost 
•  Exponentially lower power 

–  Small, cheap & low-power 
•  Microcontrollers 
•  Memory 
•  Radios 

Technology Innovations 
•  MEMS technology 

–  Micro-fabricated sensors 

•  New memories 
–  New cell structures (11T) 
–  New tech (FeRAM, FinFET) 

•  Near-threshold computing 
–  Minimize active power 
–  Minimize static power 

•  New wireless systems 
–  Radio architectures 
–  Modulation schemes 

•  Energy harvesting 
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What is driving Bell’s Law? 



Corollary to Moore’s Law 

UMich Phoenix Processor 
Introduced 2008 
Initial clock speed 

106 kHz @ 0.5V Vdd 
Number of transistors 

92,499 
Manufacturing technology 

0.18 µ 
Photo credits: Intel, U. Michigan 
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Broad availability of inexpensive, low-power, 32-bit MCUs 
(with enough memory to do interesting things) 



Hendy’s “Law”: 
Pixels per dollar doubles annually 

Credit: Barry Hendy/Wikipedia 

Keeping pixels fixed,  
 

size, power, cost fall 

G. Kim, Z. Foo, Y, Lee, P. Pannuto, Y-S. Kuo, B. Kempke, M. Ghaed, S. Bang, I. Lee, Y. Kim, S. Jeong, P. Dutta, D. Sylvester, D. Blaauw, 
“A Millimeter-Scale Wireless Imaging System with Continuous Motion Detection and Energy Harvesting, 
In Symposium of VLSI Technology (VLSI’14), Jun. 2014. 



Radio technologies enabling pervasive computing, IoT 

Source: Steve Dean, Texas Instruments 
http://eecatalog.com/medical/2009/09/23/current-and-future-trends-in-medical-electronics/ 



Established comms interfaces: 802.15.4, BLE, NFC 

•  IEEE 802.15.4 (a.k.a. “ZigBee” stack) 
–  Workhorse radio technology for sensornets 
–  Widely adopted for low-power mesh protocols 
–  Middle (6LoWPAN, RPL) and upper (CoAP layers) 
–  Can last for years on a pair of AA batteries 

•  Bluetooth Low-Energy (BLE) 
–  Short-range RF technology 
–  On phones and peripherals 
–  Can beacon for years on coin cells 

•  Near-Field Communications (NFC) 
–  Asymmetric backscatter technology 
–  Small (mobile) readers in smartphones 
–  Large (stationary) readers in infrastructure 
–  New: ambient backscatter communications 



Emerging Proximal Interfaces:  
Ultrasonic, Visible Light, Vibration 

•  Ultrasonic 
–  Small, low-power, short-range 
–  Supports very low-power wakeup 
–  Can support pairwise ranging of nodes 

•  Visible Light 
–  Enabled by pervasive LEDs and cameras 
–  Supports indoor localization and comms 
–  Easy to modify existing LED lighting 

•  Vibration 
–  Pervasive accelerometers 
–  Pervasive Vibration motors 
–  Bootstrap desktop area context 



Non-volatile memory capacity & read/write bandwidth 

Lower capacity but 
Higher R/W speeds 

*and* 
Lower energy per 
atomic operation 

*and* 
High write 
endurance 



MEMS Sensors: 
Rapidly falling price and power of accelerometers 

[Analog Devices, 2009] 
ADXL345 

10 µA @ 10 Hz @ 6 bits 

25 µA @ 25 Hz 

[ST Microelectronics, annc. 2009] 

O(mA) 

[Analog Devices, 2012] 

ADXL362 

1.8 µA @ 100 Hz @ 2V 
300 nA wakeup mode 



Energy harvesting and storage: 
Small doesn’t mean powerless… 

Thermoelectric Ambient 
Energy Harvester [PNNL] 

Shock Energy Harvesting 
CEDRAT Technologies 

Electrostatic Energy 
Harvester [ICL] 

Thin-film batteries 

RF [Intel] 

Piezoelectric 
[Holst/IMEC] 

Clare Solar Cell 
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Why study 32-bit MCUs and FPGAs? 
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MCU-32  and PLDs are tied in embedded market share 
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What differentiates these  
products from one another? 

 
FPGA                                  Microprocessor 
=====                                 ============= 
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MPU     FPGA   
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Modern FPGAs: best of both worlds! 
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Why study the ARM architecture 
(and the Cortex-M3 in particular)? 
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Lots of manufacturers ship ARM products 



ARM is the big player 

•  ARM has a huge market share 
–  As of 2011 ARM has chips in about 90% of the world’s 

mobile handsets 
–  As of 2010 ARM has chips in 95% of the smartphone 

market, 10% of the notebook market 
•  Expected to hit 40% of the notebook market in 

2015. 
–  Heavy use in general embedded systems. 

•  Cheap to use 
–  ARM appears to get an average of 8¢ per device 

(averaged over cheap and expensive chips).  
•  Flexible 

–  Spin your own designs. 
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Outline 

 
Technology Trends 
 
Course Description/Overview 
 
Tools Overview/ISA start 
 
 



Course goals 

•  Learn to implement embedded systems including 
hardware/software interfacing. 

•  Learn to design embedded systems and how to 
think about embedded software and hardware. 

•  Have the opportunity to design and build non-
trivial projects involving both hardware and 
software. 
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Prerequisites 

•  EECS 270: Introduction to Logic Design 
–  Combinational and sequential logic design 
–  Logic minimization, propagation delays, timing 

•  EECS 280: Programming and Intro Data Structures 
–  C programming 
–  Algorithms (e.g. sort) and data structures (e.g. lists) 

•  EECS 370: Introduction to Computer Organization 
–  Basic computer architecture 
–  CPU control/datapath, memory, I/O 
–  Compiler, assembler 



Topics 

•  Memory-mapped I/O 
–  The idea of using memory addressed to talk to input 

and output devices. 
•  Switches, LEDs, hard drives, keyboards, motors 

 

•  Interrupts 
–  How to get the processor to become “event driven” 

and react to things as they happen. 

•  Working with Analog inputs 
–  The real world isn’t digital! 

•  Common devices and interfaces 
–  Serial buses, timers, etc. 
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Example: Memory-mapped I/O 

•  This is important.   
–  It means our software can tell the hardware what to do. 

•  In lab 3 you’ll design hardware on an FPGA which will can control a motor. 
–  But more importantly, that hardware will be designed so the software 

can tell the hardware exactly what to do with the motor.  All by simply 
writing to certain memory locations!   

–  In the same way, the software can read memory locations to access data from 
sensors etc… 35 



Example: Anatomy of a timer system 

36 

Prescaler 

Counter 

Clock Driver 

Xtal/Osc 

Compare Capture 

Low-Level Timer Subsystem Device Drivers 

Timer Abstractions and Virtualization 

Application Software 

Software 
 

Hardware 

Applications 
 

Operating System 

Internal 
 

External 

module timer(clr, ena, clk, alrm); 
  input clr, ena, clk;
  output alrm;
  reg alrm;
  reg [3:0] count;

  always @(posedge clk) begin
    alrm <= 0;
    if (clr) count <= 0;
    else count <= count+1;
  end
endmodule

...
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O 

R/W R/W R/W 

typedef struct timer {
  timer_handler_t handler;
  uint32_t time;
  uint8_t mode;
  timer_t* next_timer;
} timer_t;

timer_tick:
  ldr r0, count;
  add r0, r0, #1
  ... 



Grades 

Item       Weight          
======      ========= 
Labs (7)      25%  
Project      25% 
Exams      35% (15% midterm; 20% final) 
HW /Guest talks  10% 
Oral presentation 5% 

•  Project and Exams tend to be the major 
differentiators. 

•  Class median is generally a low B+. 
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Time 

•  You’ll need to assume you are going to spend a 
lot of time in this class. 
–  2-3 hours/week in lecture (we cancel a few classes 

during project time) 
–  8-12 hours/week working in lab 

•  Expect more during project time; some labs are a bit 
shorter. 

–  ~20 hours (total) working on homework 
–  ~20 hours (total) studying for exams. 
–  ~8 hour (total) on your oral presentation 

•  Averages out to about 15-20 hours/week pre-
project and about 20 during the project… 
–  This is more than I’d like, but we’ve chosen to go with 

state-of-the-art tools, and those generally have a heck 
of a learning curve. 
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Labs 

•  7 labs, 8 weeks, groups of 2 
1.  FPGA + Hardware Tools 
2.  MCU + Software Tools 
3.  Memory + Memory-Mapped I/O 
4.  Interrupts 
5.  Timers and Counters 
6.  Serial Bus Interfacing 
7.  Data Converters (e.g. ADCs/DACs) 
 

•  Labs are very time consuming. 
–  As noted, students estimated 8-12 hours per lab with one lab 

(which varied by group) taking longer. 



Open-Ended Project 

•  Goal: learn how to build embedded systems 
–  By building an embedded system 
–  Work in teams of 4 
–  You design your own project  

•  The major focus of the last third of the class. 
–  Labs will be done and we will cancel some lectures and 

generally try to keep you focused. 
 

•  Important to start early. 
–  After all the effort in the labs, it’s tempting to slack 

for a bit.  The best projects are those that get going 
right away. 
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Homework 

•  4-6 assignments 
–  A few “mini” assignments 

•  Mainly to get you up to speed on lab topics 
–  A few “standard” assignments 

•  Hit material we can’t do in lab. 

•  Also a small part is for showing up to guest 
lecturer(s) 
 

Start today, Homework 1 due on Wednesday 



Looking for me? 

•  Office Hours in 2637 BBB 
–  Tuesday 2-3pm 
–  Thursday 3:30-4:30pm 

•  Email to schedule other times as needed 

42 
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Outline 

 
Technology Trends 
 
Course Description/Overview 
 
Tools overview/ISA start 
 
 



We are using Actel’s SmartFusion Evaluation Kit  
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     A2F200M3F-FGG484ES  
–  200,000 System FPGA gates, 256 KB flash memory, 64 KB SRAM, and 

additional distributed SRAM in the FPGA fabric and external memory 
controller 

–  Peripherals include Ethernet, DMAs, I2Cs, UARTs, timers, ADCs, DACs and 
additional analog resources 

•  USB connection for programming and debug from Actel's design tools 
•  USB to UART connection to UART_0 for HyperTerminal examples 
•  10/100 Ethernet interface with on-chip MAC and external PHY 
•  Mixed-signal header for daughter card support 
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FPGA work 
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“Smart Design” configurator 
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Eclipse-based “Actel SoftConsole IDE” 
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Debugger is GDB-based.  Includes command line. 
Works really quite well. 
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ARM ISA 

50 



51 

Major elements of an Instruction Set Architecture 
(registers, memory, word size, endianess, conditions, instructions, addressing modes) 

32-bits 32-bits 

Endianess 

	
	mov	r0,	#1	
	
	ld		r1,	[r0,#5]	
	
						r1=mem((r0)+5)	
	
	bne	loop	
	
	subs	r2,	#1	

Endianess 



The endianess religious war: 284 years and counting! 

•  Modern version 
–  Danny Cohen 
–  IEEE Computer, v14, #10 
–  Published in 1981 
–  Satire on CS religious war 

•  Historical Inspiration 
–  Jonathan Swift 
–  Gulliver's Travels 
–  Published in 1726  
–  Satire on Henry-VIII’s split 

with the Church 
•  Now a major motion picture! 
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																														Memory					Value	
																														Offset		(LSB)	(MSB)	
																														======		===========	
uint8_t	a		=	1;															0x0000		01	02	FF	00	
uint8_t	b		=	2;	
uint16_t	c	=	255;	//	0x00FF	
uint32_t	d	=	0x12345678;						0x0004		78	56	34	12	

•  Little-Endian 
–  LSB is at lower address 

•  Big-Endian 
–  MSB is at lower address 

																														Memory					Value	
																														Offset		(LSB)	(MSB)	
																														======		===========	
uint8_t	a		=	1;															0x0000		01	02	00	FF	
uint8_t	b		=	2;	
uint16_t	c	=	255;	//	0x00FF	
uint32_t	d	=	0x12345678;						0x0004		12	34	56	78	



Addressing: Big Endian vs Little Endian (370 slide) 

•  Endian-ness: ordering of bytes within a word 
–  Little - increasing numeric significance with increasing 

memory addresses 
–  Big – The opposite, most significant byte first 
–  MIPS is big endian, x86 is little endian 



Instruction encoding 

•  Instructions are encoded in machine language opcodes 
•  Sometimes 

–  Necessary to hand generate opcodes 
–  Necessary to verify assembled code is correct 

•  How? 

Instructions	
movs	r0,	#10	
	
movs	r1,	#0	

AR
M

v7
 A

RM
 

Register	Value						Memory	Value	
001|00|000|00001010	(LSB)	(MSB)	
(msb)									(lsb)	0a	20	00	21	
001|00|001|00000000	



Assembly example 

data: 
    .byte 0x12, 20, 0x20, -1 
func: 
        mov r0, #0 
        mov r4, #0 
        movw   r1, #:lower16:data 
        movt   r1, #:upper16:data 
top:    ldrb   r2, [r1],1 
        add r4, r4, r2 
        add r0, r0, #1 
        cmp r0, #4 
        bne top 
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Instructions used 

•  mov 
–  Moves data from register or immediate. 
–  Or also from shifted register or immediate! 

•  the mov assembly instruction maps to a bunch of 
different encodings! 

–  If immediate it might be a 16-bit or 32-bit instruction. 
•  Not all values possible 
•  why? 

•  movw 
–  Actually an alias to mov. 

•  “w” is “wide” 
•  hints at 16-bit immediate. 
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From the ARMv7-M Architecture Reference Manual 
(posted on the website under references) 
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There are similar entries for 
move immediate, move shifted 
(which actually maps to different  
instructions) etc. 



Directives 

•  #:lower16:data 
–  What does that do? 
–  Why? 
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Loads! 

•  ldrb? 
•  ldrsb? 
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So what does the program _do_? 

data: 
    .byte 0x12, 20, 0x20, -1 
func: 
        mov r0, #0 
        mov r4, #0 
        movw   r1, #:lower16:data 
        movt   r1, #:upper16:data 
top:    ldrb   r2, [r1],1 
        add r4, r4, r2 
        add r0, r0, #1 
        cmp r0, #4 
        bne top 
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Questions? 
 

Comments? 
 

Discussion? 


