EECS 373

Design of Microprocessor-Based Systems

Website: www.eecs.umich.edu/courses/eecs373/

Ronald Dreslinski
University of Michigan

Lecture 1: Introduction, start on ARM ISA
September 7th 2016

Slides developed in part by
Prof. Dutta and Dr. Brehob

, V
R Vilk

Folks o
Vil

e Prof. Ron Dreslinski

e« Matt Smith

- Head lab instructor
- Been doing 373 for about 15 years!

e |As:

- Yifan Hao

- Daniel Synder
- Jay Mulani

- Kevin Yang

What is an embedded system? B

R Vilk

Embedded, everywhere CMTCHIGAN |

Embedded,
Everywhere

{; Texas
€2430-Chronos INSTRUMENTS

i Wireless Development Tool MSP430

Embedded, Everywhere - Fitbit —
iV ilk

~
[g

1800 calories bumet

calories eaten

, V
R Vilk

What is driving the
embedded everywhere explosion?

Outline SMTCHIGAN
Vil

Technology Trends

Course Description/Overview

Tools Overview/ISA start

Moore’ s Law (a statement about economics):

IC transistor count doubles every 18-24 mo

Transistors
Per Die

® 1965 Actual Data 16 2G 4G

m MOS Arrays A4 MOS Logic 1975 Actual Data 256M 912M

1975 Projection i g Itanium™

Mornd Pentium® 4
; 5, Pentium® Il
A Microprocessor Pentium®Il

@

Pentium®

: 32GHz 1.7 GHz
266 GHz 291,000,000 55,000,000

582,000,000 65nm s
651
1960 1965 o
o o — 820,000,000 95""; 4 ‘2971 /000,000
o 1 { 4500 65nm
N [=
66 Mz 25 MHz 6 MHz
3,100,000 1,200,000 134,000
0.8 im 1.5u
5 MHz 5 Mriz
_291000 29:000
3u 3u

15 GHz
42,000,000

N 10
1GHz

220,000,000
0.13p

500-800 KHz
3:500
10

=t
2 MHz

4,500
6u

500 MHz
9,500,000
0.180

300 MHz
7,500,000
0.25u

200 MHz
5,500,000
0.6p

108 KHz
2,300
10u

Photo Credit: Intel

The number of computers per person grows icaican

log (people per computer)

R Vilk

Mainframe [Bell et al. Computer,
1 per Enterprise 1972, ACM, 2008]

.*"Workstation
1 per Engineer Laptop

1 per
Professional
Smart
R Sensors
.. * NN E T
Mini Nadn o
Computer
1 per Company ¢
Personal %0’
Computer .+* 100 — 1000°s
1 per Family 1 per person *o‘ per person
Smartphone

- | - | - | - | - | | | - |
1950 1960 1970 1980 1990 2000 2010 2020

Computer volume shrinks by 100x every decade

Size (mm°)

100m —

Mini
N. A
Computer N_ XS
1 per Company
Personal
Computer
1 per Family

, V
R Vilk

Mainframe
1 per Enterprise

100x smaller

Workstation every decade
1 per Engineer
[Nakagawa08]
Laptop
1 per

Professional
O
& Smart
N Sensors
' N

. 100-1000’s

1 per person % per person

Smartphone

- | - | - |
1950 1960 1970 1980

| - |
1990 2000 2010 2020

Price falls dramatically, and enables new applications m:v:

100000

10000

|

1 Mini

Inflation Adjusted Price (1000s of USD)

Computer streaming
) information
0.1 Personal 3> rsto/from the
Computer : ¢ physical
001 Smalrtphonel | world

| - I | 1 - | | | |
1950 1960 1970 1980 1990 2000 2010 2020

Bell’s Law: A new computer class every decade

“Roughly every decade a new,
lower priced computer class
forms based on a new By GORDON BELL

programming p atjorm, BELL’S LAW FOR THE
reszllfgggl;’na:edwl utse:zgf: i]e;vd BIRTH AND DEATH OF Q‘ 5

the establishment of a new COMPUTER CLASSES

industry, ” A theory of the computers evolution.

In the early 1950s, a person could walk inside a computer and by 2010 a
single computer (or “cdluster) with millions of processors will have
expanded to the size of a building, More importantly, computers are begin-

- Gordon Bell [1972,2008] ning t0 “wall” inside of us. These ends of the compuring spectrum ilus-
trate the vast dynamic range in computing power, size, cost, land other
factors for early 21st century computer dlasses.

A computer class is a set of computers in a particular price fange with
unique or similar programming environments (such as Limux, OS/360,
Palm, Symbian, Windows) that support a variety of applications that com-
municate with people and/or other systems. A new computer class forms
and approximately doubles each decade, establishing a new industry. A
class may be the consequence and combination of a new platform with a
new programming environment, a new network, and new interface with
people and/or other information processing systems.

86 juruary 2008/¥el $1, N0 | COMMUNICATIONS OF THE ACM

What is driving Bell’s Law?

Technology Scaling

e Moore’s Law

- Made transistors cheap

Dennard’s Scaling

- Made them fast
- And low-power

Result

- Holding #T’s constant
« Exponentially lower cost
« Exponentially lower power
- Small, cheap & low-power
e Microcontrollers
e Memory
» Radios

, V
R Vilk

Technology Innovations
e« MEMS technology

- Micro-fabricated sensors

New memories

- New cell structures (11T)

- New tech (FeERAM, FinFET)
Near-threshold computing
- Minimize active power

- Minimize static power

New wireless systems
- Radio architectures
- Modulation schemes

Energy harvesting

Corollary to Moore’s Law

[MICHIGAN |
ik o

Quad-Core Intel® Xeon® processor
Quad-Core Intel® Core™2 Extreme processor
Introduced 2006

Intel® Core™2 Quad processors

Introduced 2007

Initial clock speed

2.66 GHz

Number of transistors

582,000,000

Manufacturing technology

65nm

Intel® 4004 processor
Introduced 1971 i
2a8 X [5] |
Initial clock speed |"T»ﬁ|'—' L HEEL | s |1
128x|0 KT DMEM |}

IROM 2 2 !

108 KHz

Number of transistors

2,300

Manufacturing technology

10

Cl Power gated
D Partially gated D Not gated

UMich Phoenix Processor
Introduced 2008
Initial clock speed

106 kHz @ 0.5V Vdd

Number of transistors

92,499

Photo credits: Intel, U. Michigan ga;\gacturing technology
.10 M

Broad availability of inexpensive, low-power, 32-bit MCUs
Vil

(with enough memory to do interesting things)

YActel AIMEL

POWER MATTERS
2SS NETWORKS

TEXAS
INSTRUMENTS

, V
R Vilk

Hendy’'s “Law’:
Pixels per dollar doubles annually

Figure 11. Sample image taken with
the image sensor and GRIN lens,
' transmitted via Mbus.

The Pixels per Dollar Projection

Bttt "N\ C¥7200 <+
0 -
C %7300
+

. Exaz00 . ' i
4+ CX4200 .
DX3700

—
o
[}
o

IS
©
D
)
o
“m
o]
>
(18

Imaging
Direction

Dark Epoxy Optical Epoxy

Filli

"gj GRIN Lens
(]

[
“

1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005

PV Cells (130nm) PV Cells (130nm)

Protective Epoxy

. . . . Attachment E;
Credit: Barry Hendy/Wikipedia [oo
B A A A}

G. Kim, Z. Foo, Y, Lee, P. Pannuto, Y-S. Kuo, B. Kempke, M. Ghaed, S. Bang, I. Lee, Y. Kim, S. Jeong, P. Dutta, D. Sylvester, D. Blaauw,

“A Millimeter-Scale Wireless Imaging System with Continuous Motion Detection and Energy Harvesting,
In Symposium of VLSI Technology (VLSI’ 14), Jun. 2014.

Radio technologies enabling pervasive computing, 10T paAe

R Vilk

A
480 Mbps
€3 Bluetooth
300 Mbps SMART
S
3]
~ Active RFD
g 54 Mbps +
o Coptearn) ()
11 Mbps
: =)
3 Mbps PHREAD g (D
(Corowenn @)
250 kbps | (ece sozsamac)
ZigBee) —
20kbpS Lo passive RFID ' ()
- T —>
1 10 100
Range (meters)

Source: Steve Dean, Texas Instruments
http://eecatalog.com/medical/2009/09/23/current-and-future-trends-in-medical-electronics/

Established comms interfaces: 802.15.4, BLE, NFC

« |EEE 802.15.4 (a.k.a. “ZigBee” stack)

Workhorse radio technology for sensornets
Widely adopted for low-power mesh protocols

Middle (6LoWPAN, RPL) and upper (CoAP layers)
Can last for years on a pair of AA batteries

|
AARBRERARE N R CE IR AN

e Bluetooth Low-Energy (BLE)
- Short-range RF technology
- On phones and peripherals
- Can beacon for years on coin cells

e Near-Field Communications (NFC)
Asymmetric backscatter technology

Small (mobile) readers in smartphones
Large (stationary) readers in infrastructure
New: ambient backscatter communications

Emerging Proximal Interfaces:
Ultrasonic, Visible Light, Vibration

« Ultrasonic
- Small, low-power, short-range

- Supports very low-power wakeup
- Can support pairwise ranging of nodes

« Visible Light
- Enabled by pervasive LEDs and cameras
- Supports indoor localization and comms
- Easy to modify existing LED lighting

e Vibration
- Pervasive accelerometers

- Pervasive Vibration motors
- Bootstrap desktop area context

Non-volatile memory capacity & read/write bandwidth g

Storage capacity (Mb)
NN NAND flash 128Gb)
100,000 - Cond. - 1Mb <
ISSCC, VLSI Circuits, ASSCC | 32Gb
10,000 |IEDM, VLSI Tech. o RRAM

1000

100

10

1

2007 200
Year
Write bandwidth (MB/s)
w
10,000 =cond > 1vb A Y
— 1SSCC, VLSI Cir., merging N
—~ ASSCC 2001-2011) _pam i.reﬁm I
= (ASSCC'06) F.RAM TRAM RRAM
- eRAM, (1SscC'11)
100 (- r (1SSCC'06) -
= | NAND
— (ISSCC'08) | praM Betics
- ISSCC'07,'10
10 <-) PRAM
- - [(1sscc'11))
= . g \OR eNOR,
LS, R (1SSECio7, 99) Quassccon |,
100 1000 10,000

Read bandwidth (MB/s)

Lower capacity but
Higher R/W speeds
and
Lower energy per
atomic operation
and

High write
endurance

MEMS Sensors: L v 4

Rapidly falling price and power of accelerometers V.
O(mA) : \
S5 analog Devices, 2009]
E RN 4. ADXL345
Ol’l/@
7 110 pA @ 10 Hz @ 6 bits
S‘T Microelectronics, annc. 2009]
- ADXL362

| DWESI POWE
HlH(!

1.8 UA@ 100 Hz @ 2V
300 nA wakeup mode

[Analog Devices, 2012]

Energy harvesting and storage:
Small doesn’ t mean powerless...

1st Annual Workshop on - . October 22,2009

MICRO POWER TECHNOLOGIES

SRS e .

3l

Tt

RF [Intel] clare Solar Cell

Radisson Hotel, San Jose, CA

W E
E‘” oa

Thin-film btteries

dva18008

Shock Energy Harvesting
CEDRAT Technologies

Piezoelectric
[Holst/IMEC]

Oscillating
weight

Oscillating
weight gear

Thermoelectric Ambient
Energy Harvester [PNNL]

, V
R Vilk

Why study 32-bit MCUs and FPGAs?

MCU-32 and PLDs are tied in embedded market share

A

Vil

100%

90%

80%

70%

60%

50%

% of Total Sum of DATA

40%

30%

20%

10%

1997

Source: iSuppli

1998

1999

2000

2001

2002

2003

2004

Year

2005

2006

2007

2008

2009

2010

2011

0% \ \ \ | \ \ i i i \ \ \ | | \ |

2012

Device (group)

B roo

B 32sitmcu

, V
R Vilk

What differentiates these
products from one another?

FPGA Microprocessor

MPU

Instruction address Instruction data

Instruction
pipeline

Interrupt address Read register

Address register

ALU bus

32-hit

register bank
(17 registers)

Write register Read register

Data bus Data address Data bus

The Cortex M3's Thumbnail architecture looks like a conventional Arm processor.The differences are found
in the Harvard architecture and the instruction decode that handles only Thumb and Thumb 2 instructions.

FPGA

A

ik Vil

x[]
O
O
O~

I/0 block

L 4
i —ge
Chex o o
x I'l 3/. 'z?/- X X X X
L . 50Tk
Interconnection switches ¥
1/0 block I i_l T x
D I XXX XS } x X
- A section of a programmed FPGA

32019 O/I

General structure of an FPGA

26

Modern FPGAs: best of both worlds!

Traditional Methods No Longer Scale |
FPGA Growing Complexity

Today's FPGA are SoCs!!!!

Moore's Law

27

, V
R Vilk

Why study the ARM architecture
(and the Cortex-M3 in particular)?

Lots of manufacturers ship ARM products

JActel

POWER MATTERS

ATMEL

®

?'z‘o;gDUST
2SS NETWORKS

¥ CYPRESS

PERFORM

TEXAS
INSTRUMENTS

ARM is the big player S
"\{ 1

e ARM has a huge market share

- As of 2011 ARM has chips in about 90% of the world’s
mobile handsets

- As of 2010 ARM has chips in 95% of the smartphone
market, 10% of the notebook market

o Expected to hit 40% of the notebook market in
2015.

- Heavy use in general embedded systems.
e Cheap to use

- ARM appears to get an average of 8¢ per device
(averaged over cheap and expensive chips).

» Flexible
- Spin your own designs.

Outline RIS

R Vilk

Course Description/Overview

Tools Overview/ISA start

Course goals B

R Vilk

e Learn to implement embedded systems including
hardware/software interfacing.

e Learn to design embedded systems and how to
think about embedded software and hardware.

e Have the opportunity to design and build non-
trivial projects involving both hardware and
software.

Prerequisites S

R Vilk

e« EECS 270: Introduction to Logic Design

- Combinational and sequential logic design
- Logic minimization, propagation delays, timing

e EECS 280: Programming and Intro Data Structures
- C programming
- Algorithms (e.g. sort) and data structures (e.g. lists)

e EECS 370: Introduction to Computer Organization
- Basic computer architecture
- CPU control/datapath, memory, 1/0
- Compiler, assembler

Topics B
Vil

Memory-mapped |/0

- The idea of using memory addressed to talk to input
and output devices.

» Switches, LEDs, hard drives, keyboards, motors

Interrupts

- How to get the processor to become “event driven”
and react to things as they happen.

Working with Analog inputs
- The real world isn’t digital!

Common devices and interfaces
- Serial buses, timers, etc.

Example: Memory-mapped I/0 ST e

Ox FFFFFFEF ¢
System
DxEO100000
Private peripheral bus - Exdernal
Ox E0040000

Private peripheral bus - Intermal

Ox EQ000000
Peripherals (BB view Paripheral
Extemal device 1.0GB | PSEL[0]
FPGA Fabric FPGA Fabrik ! g:&m
FPGA Fabric eSRAM Backdoor | FPGA Fabric eSRAM Backdoor | 00 T PSEL[3]
0x40030004 - Ox4003FFFF \, ...
Analog Compute Engine Analog Compute Engine 0x40020000 - 002 .
0x40017000 — Ox4001FFFF FPGA Fabric Memory Map

Extemal RAM 1.0GB

Used by the APB3 Bus interface

IAP Controller AP Controlier 040016001

eFROM eFROM 0x4001 SFFF
RTC RTC 0x4001 4FFF
MSS GPIO MSS GPIO 0x4001 3FFE

12C 1 2C 1 0x4001200(O012FFF
Peripheral ~ 0.5GB SPI 1 P11 0%4001100(001 15FF
UART 1 UART 1 0x4001¢ 10FFF
0x 40004 OOOFFFF
Fabric Intertace Interrupt Controliar Fabric Imerface Intermupt Controller | 0X4000 Q007 FFF
SRAM Watchdog Watchdog 0x40006000 - Dx40006FFF
Timer Timer 0x4000500(
Peripheral DMA Peripheral DMA 04000 ODOAFFF
Ethormot MAC =T MAC 0x4000 D03FFF
Code 2C 0 ¢ Dx4000 WO02FFF
SPI_O sP1 0 Dx40001000 — 0x40001FFF
) 0x00000000 UART 0O UART 0 040000000 — Ox40000FFF
Cortex-M3 Memory Map SmartFusion Peripheral Meraory Map

e This is important.
- It means our software can tell the hardware what to do.
e Inlab 3 you’ll design hardware on an FPGA which will can control a motor.

- But more importantly, that hardware will be designed so the software
can tell the hardware exactly what to do with the motor. All by simply
writing to certain memory locations!

- In the same way, the software can read memory locations to access data from
sensors etc...

Example: Anatomy of a timer system

Applications

Application Software

R Vilk

timer_t timerX;
initTimer();

startTimerOneShot (timerX, 1024);

stopTimer (timerX);

typedef struct timer {
timer_handler_t handler;
uint32_t time;
uint8_t mode;
timer_t* next_timer;

} timer_t;

Low-Level Timer Subsystem Device Drivers

Software
R/W R/W
Hardware
— Compare ﬁL Counter
Prescaler
Clock Driver
Internal

Xtal/Osc

R7W

Capture

timer_tick:
ldr r0, count;
add r0, r0, #1

module timer(clr, ena, clk, alrm);
input clr, ena, clk;
output alrm;
reg alrm;
reg [3:0] count;

always @(posedge clk) begin
alrm <= 0;
if (clr) count <= 0;
else count <= count+l;
end
endmodule

Grades ETr

Vil
Item Weight
Labs (7) 25%
Project 25%
Exams 35% (15% midterm; 20% final)

HW /Guest talks 10%
Oral presentation 5%

e Project and Exams tend to be the major
differentiators.

e Class median is generally a low B+.

Time

e You’ll need to assume you are going to spend a
lot of time in this class.

2-3 hours/week in lecture (we cancel a few classes
during project time)

8-12 hours/week working in lab

e Expect more during project time; some labs are a bit
shorter.

~20 hours (total) working on homework
~20 hours (total) studying for exams.
~8 hour (total) on your oral presentation

e Averages out to about 15-20 hours/week pre-
project and about 20 during the project...

- This is more than I’d like, but we’ve chosen to go with
state-of-the-art tools, and those generally have a heck
of a learning curve.

, V
R Vilk

Labs ETr

R Vilk

o 7/ labs, 8 weeks, groups of 2
1. FPGA + Hardware Tools
2. MCU + Software Tools
3. Memory + Memory-Mapped |/0
4. |nterrupts
5. Timers and Counters
6. Serial Bus Interfacing
/. Data Converters (e.g. ADCs/DACs)

e Labs are very time consuming.

- As noted, students estimated 8-12 hours per lab with one lab
(which varied by group) taking longer.

Open-Ended Project S

R Vilk

e Goal: learn how to build embedded systems
- By building an embedded system
- Work in teams of 4
- You design your own project

 The major focus of the last third of the class.

- Labs will be done and we will cancel some lectures and
generally try to keep you focused.

« Important to start early.

- After all the effort in the labs, it’s tempting to slack
for a bit. The best projects are those that get going
right away.

Homework -y

R Vilk

e 4-6 assignments
- A few “mini” assighments
e Mainly to get you up to speed on lab topics
- A few “standard” assignments
e Hit material we can’t do in lab.

e Also a small part is for showing up to guest
lecturer(s)

Start today, Homework 1 due on Wednesday

Looking for me? R

R Vilk

e Office Hours in 2637 BBB
- Tuesday 2-3pm
- Thursday 3:30-4:30pm

« Email to schedule other times as needed

Outline m%ma‘&

R Vilk

Tools overview/ISA start

We are using Actel’s SmartFusion Evaluation Kit

®

SmartFusion Device RVI - Header OLED Display

#] '}E Epfs i wle aEFRED o TR
m

44
m

kT Potentiometer
'm
USB Program & ==
Debug Interface _:_ % tE @
-) 5 Debug 10s
M " " B G . Reset Switch
/‘”\4 X T - I'I’I_'_
m S) =
§ S T i) %-- Debug Select
: EBT =
v o o N .
10/100 Ethemet __ "—==9 oyl Sia sl s 8 User LEDs
Interface 3 X e i 3
= %Y , Tl = JTAG Select
Regulators L M
N T A PUB Switch
g. 1}
USB Power & = AT ENS IO i e SPI-Flash Memory
USB-UART Interface 3 - s 9 : i - o
- - b | -
Q0 :
@ Q0O Q (@
11 ! ‘ !]
. | I | I
User SW1 Mixed-Signal 20MHz 32768 KHz VRPSM Voltage User SW2

Header Crystal Crystal Option

A2F200M3F-FGGA484ES LV

- 200,000 System FPGA gates, 256 KB flash memory, 64 KB SRAM, and iV ils
additional distributed SRAM in the FPGA fabric and external memory
controller

- Peripherals include Ethernet, DMAs, 12Cs, UARTs, timers, ADCs, DACs and
additional analog resources

USB connection for programming and debug from Actel's design tools
USB to UART connection to UART_O for HyperTerminal examples
10/100 Ethernet interface with on-chip MAC and external PHY
Mixed-signal header for daughter card support

SmartFusion Device RVI - Header OLED Display

$ % ‘ Potentiometer
s
B T T
USB Program & | Pl H . [EE !
Debug Interface ="y = L =S R
: lﬁ\; a7 ;uuuuuxuu e d S ‘m—o 5 Debug 10s
u IV RTF Ak e
. wsu — RESETH 3] i, PERst g
o muond | Fa : : _— Jo 93
—Ty % L 5 = " Debug Select
.- - an
10/100 Ethemet g 'E 3 b i S - 8 User LEDs
Interface B | o),
} JTAG Select
Regulators —— RetetEecrlle el
: PUB Switch
n 3 " o d LR
USB Power & Mo Tt — e SPI-Flash Memory
USB_UART In‘eﬂace _— = b rnulgl 1:- owmere car i\ 1 . o v ™

f.; “»

L-! '_

User SW1 Mixed-Signal 20MHz 32768 KHz VRPSM Voltage User SW2
Header Crystal Crystal Option

FPGA work EIrre
Vi

MICRULUNI RULLER SUBSYSI EM
Clock Management CortexM3 ESRAM
ENVM External Memory Controller
ADad
4 #2
- - E
AHB Bus Matrix
L L L
r/-
- 3 3 -
A PE_O APB_1
ACE POMA UART_O UART_1L
CLY Poa g
“ Praca ‘
TIMERx2 SPIO SPLL
" RO ‘ RO @
WATCHDDG 12€_0 Lt
& —_—— A@ RO
#l z z
Reset Management MAC GPIO EFROM
FMLRT MV _RD2Q
BAET TN PAOLO R0 Q | b ¥ I
F
RTC
Interrupt Management
#
Hardware Con igursiion
MSS IO Fabri¢ Interface
Krmrwvars Con lgursiion
? 9 vl Mo Configuretion
Dimbhd

“Smart Design” configurator

Project Manage \Documents and Settings\brehob\Desktop\373lab\Mab5_fpga\lab5_fpga.prj - [mary_smart_design]

u Project File Edit View Tools SmartDesign Canvas “Window Help g X
RlS@ D|S|E| & |m=le o Cunent Designer view: | Impl1 - ol e| maE = Elel @ &]R N N (=
Design Explorer L v X Catalog L v X
Show: IComponents LI V- ‘ ‘ @ < fJ <~
- “ work Name “ Mersion ‘
B INBUF_LVDS_MCCC (mss_comps.v) #- Actel Macros
5l INBUF_LVPECL_MCCC [mss_comp... @ Basic Blocks
B INBUF_MCCC (mss_comps.v) - Bus Interfaces
. [#- Clock & Management
[+ @ mary_smart_design bob_0 +- DSP
E=ﬁ MSS_AHB [mss_comps.v] [+ Memory & Controllers
B MSS_ALL (mss_comps.v) @ Peripherals
B} MSS_LPXTLOSC [mss_comps.v) MSS_RESE... MSS_RE... GLC _ lABrOCes Sons
e y " MAC CLK FAB CLK
ol MSS_XTLOSC [mss_comps.v) FABINT M2F_RE..
[BL MSSINT [mss_comps.v) + UART 1 EMC +)
fiif Mss_BFM_LIB UART 0 MAC RMI.#
+ff§ COREsPB3_LIE 12C_0
SPI 1
SPI O
2C_1
MAC RMI
IP,
2 3
[
E o
8 =
timer_0
PCLK FABINT
PRESETN PYyAhi1
TCLK P2
CAPTURE [CAPTURE test outl...
i
timer
A
< b
E'—\ Canvas |~ 1/0 Attribute Editor Mo core selected
Project Flow mary_smar... timer.v
4> pos ||*)) Find | §4~ options |
o Reading file 'mary_swart_design.v'. ~
' Reading file 'coreapbh3.v'.
& Reading file 'coreaph3_muxptob3.v'.
Reading file 'timer.wv'.
The lab5 fpga project was opened.
3 Downloading Actel:SwartFusionMS3:MS5:2.4.101 _!S [lew cores are
‘l | » T L4 available -
= £ v |L
[E]Hierarchy les B[] an A Erors) warnings) Info } SearchResuts1 [Cores |Templates | Bus Definitions
Ready VERILOG [FAM: SmartFusion DIE: A2F200M3F PKG: 484 FBGA

iy Start) Google News - Mozilla. . «.* Project Manager - C:\,... iy desktop.bmp - Paint

Eclipse-based “Actel SoftConsole IDE”
Vi

File Edit Source Refactor Mavigate Search Project Run Window Help

- B S

.Gl

Y %5 Debug | @ Cjc++ |

|25 Project Explorer 2 =

107 assembly_test
1 forCheatShest
T Labz
1T lab3_test
L7 labé
17 lab4again

15 labS

9L @@ iR iB-0-Q ™y @[S
¥ =08 _@main.cﬁi

iy

=0

56

if {status & 0x01)
{
printf ("Overflow latency %1ldin\r", O-time):
}
if {status & 0x02)
{
/i printf ("Compare latency %1ldin\r", (1<<29)
64 }
65 if {status & 0x4)
66 {
67 printf ("Capture SYNC 31ld\n\r", sync_cap):’
] }
if {status & 0x8)
{

printf ("Capture ASYNC $1ld\n\r", async_cap):
}
NVIC_ClearPendingIRQ(Fabric IROn):

/% Watchdog Disabling function */
M35 _WD_disable():

/% Setup MYTIMER */

MYTIMER_init():

MYTIMER_load((1<<31)): // low time
MYTIMER_compare(({1<<27)); // high tine

// MYTIMER enable overflow():
//MYTIMER ensble compare():
MYTIMER_enable_capture():
MYTIMER enable_ puwmi):

// MYTIMER enable_ interrupts():

NVIC_EnableIRQ{Fabric IROn):

MYTIMER enable():

MrintF (PTHR 1 1 anann Bt ey .

<

- time);

|

A0

|

5% outin 52 @ Make | = O

BERY o %7

[2 Problems | ¥ Tasks | B console 52 B Properties‘ B3 Debug‘
Mo consoles to display at this time.

‘ ~

o
o
o
o
e

Tl

stdio.h
driversfmss_uartfmss_uart
driversfmss_watchdogfmss
mytimer.h
Fabric_IRQHandler(void) :
main() : int

Writable

") Google News - Mozila. .. «. Proj " desktop2.bmp - Paint

12:21 PM

Debugger is GDB-based. Includes command line.
L.

Works really quite we

R Vilk

File Edit Source Refactor Mavigate Search Project Run Window Help
C-rE& & i3 0-Q- i@~ i[4:&-F-
‘ﬁiDebug &3
E] main.c &3
56
57 if {status & 0x01)
58 {
59 printf ("Overflow latency %1ld\n\r", O-time):;
60 ¥
51 if {status & 0x02)
62 {
3 I printf ("Compare latency %1ldin\r", (1<<29)
64 i
65 if (status & 0x4)
66 {
67 printf ("Capture SYNC %1din\r", sync_cap)’
68 }
69 if (status & 0x8)
70 {
71 printf ("Capture ASYNC $1ldin\r", async_cap)’
72 ¥
73 NVIC_ClearPendingIRQ(Fabric IROn):
74}
5

@

int main ()
{

@

/% Watchdog Disabling function */
MSS_WD_disable():

0

E o4 /% Serun MYTTMER */

El console 2] Tasks | [Problems | € Executables| @ Memory
Mo consoles to display at this time.

= i 32 @ ¥ 7 O |[69= variables | @ Breakpoints 2 . 4} Registers | B Modules & x mEgY=O
=0 EE Outline | [s1) Disassembly £2 ¥ =0
~
- tine):;
i
= = £S5~ =8
Writable Smart Insert | 79:1

desktop2.bmp - Pai

ARM ISA ETr
Vil

Major elements of an Instruction Set Architecture “MicHIGAN |
(registers, memory, word size, endianess, conditions, instructions, addressing modes) Vil
32-bits 32-bits
RO < 1 I OxFFFFFFFF
R1 I System
R2 Private peripheral bus - External OxEO100000
0xE0040000
Ei mov r‘e, #1 Private peripheral bus - Internal OXE0000000
R5 External device 1.0GB
Es 1d r‘l) [r‘@, #5] 0xA0000000
R8 External RAM 1.0GB
RO ri=mem((re)+5)
R 1 0 0x60000000
R11 Peripheral ~ 0.5GB
R12 bne 100p 0x40000000
R13 (SP) rapy 0GB
R14 (LR) 0x20000000
R15 (PC subs r2 9 #1
PSR Code 0.5GB
0x00000000
Endigness Endianess
31 30 29 28 27 26 \ 4 0

N|Z|C|V|[Q RESERVED

The endianess religious war: 284 years and counting! R

Vi

e Modern version e Little-Endian

- Danny Cohen - LSB is at lower address

- |IEEE Computer, v14, #10 G T

— Publ‘lshed]n 1981 uint8_ t a = 1; ;)_(;;;; ;1_;;_;;_;;

uint8_t b = 2;

- Satire on CS religious War | iincs: « - oxssssers. | oxco0s 75 56 34 12
o Historical Inspiration e Big-Endian

- Jonathan Swift | - MSB is at lower address

a Memory Value

Offset (LSB) (MSB)

- Gulliver's Travels

- Published in 1726 e oY 0x0000 01 02 00 FF
. . uintlé_t c = 255; // 0x00
- Satire on Henry-VIII’S Spl]t uint;g:t d = 0iiz345678; " 0x0004 12 34 56 78

with the Church

« Now a major motion picture!

Addressing: Big Endian vs Little Endian (370 slide) Cicrioan
Vil

e Endian-ness: ordering of bytes within a word

- Little - increasing numeric significance with increasing
memory addresses

- Big - The opposite, most significant byte first
- MIPS is big endian, x86 is little endian

Register Register
Memory 0OAOBOCOD OAOBOCOD Memory
a O.A - —>» q:10D
a+1:|0B | -« > a+1:/0C
a+2:|0C | = —>» a+2:|0B
a+3:10D | = > a+3:/0A
. Big-endian Little-endian :

Instruction encoding m.v.

 Instructions are encoded in machine language opcodes

e Sometimes
- Necessary to hand generate opcodes
- Necessary to verify assembled code is correct

e How?
Instructions Register Value Memory Value
movs ro, #10 001|00|000|00001010
Pa 20 60 21
movs ri, #0 001|00|001| 00000000
Encoding T1 All versions of the Thumb ISA.
5 MOVS <Rd>,#<imm8> Qutside IT block.
< MOV<c> <Rd>,#<imm8> Inside IT block.
'; 1514131211109 8 7 6 5 4 3 210
=| |00 1|0 0| Rd immS§
X
< d = UInt(Rd); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32); carry = APSR.C;

Assembly example S
"\{ 1
data:

.byte 0x12, 20, 0x20, -1

func:

mov r0, #O0

mov r4d, #0

movw rl, #:lowerl6:data

movt rl, #:upperl6:data
top: 1drb r2, [rl],1

add r4, rd4, r2

add r0, r0, #1

cmp r0, #4

bne top

Instructions used -y

R Vilk

e MOV
- Moves data from register or immediate.
- Or also from shifted register or immediate!

« the mov assembly instruction maps to a bunch of
different encodings!

- If immediate it might be a 16-bit or 32-bit instruction.
e Not all values possible
e why?
e MOVW
- Actually an alias to mov.
“w” is “wide”
e hints at 16-bit immediate.

From the ARMv7-M Architecture Reference Manual

iV ilk
(posted on the website under references) :
A6.7.76 MOV (register)

Move (register) copies a value from a register to the destination register. It can optionally update the

condition flags based on the value.

Encoding T1 ARMv6-M, ARMv7-M If <Rd> and <Rm> both from RO-R7.

otherwise all versions of the Thumb ISA.

MOV<C> <Rd>, <Rm> If <Rd> 1s the PC, must be outside or last in IT block

1514131211109 8 7 6 5 4 3 210

010001|1 0D Rm Rd

d = UInt(D:Rd); m = UInt(Rm); setflags = FALSE;

if d == 15 & InITBlock() &% !'LastInITBlock() then UNPREDICTABLE;

Encoding T2 All versions of the Thumb ISA.

MOVS <Rd>,<Rm> {formerly LSL «RdsRa 30} Not permitted mnside IT block

151413121110 9 8 7 6 5 4 3 2 10

0000000000 Rm | Rd There are similar entries for

d = UInt(Rd); m = UInt(Rm): setflags = TRUE: move immediate, move shifted

if InITBlock() then UNPREDICTAELE; (Wthh actually maps to different

Encoding T3 ARMv7-M inSthtionS) etc.
MOV{S}<c>.W <Rd>,<Rm>

151413121110 9 8 7 6
11101(01(001

3 0 1514131211109 8 7 6 5 4 3 2 10
1 1

1
1 1|00 0 0 Rd 0 000 Rm

e L

5 4
0[S

d = UInt(Rd); m = UInt(Rm); setflags = (S = "1');
if setflags & (d IN {13,15} || m IN {13,15}) then UNPREDICTABLE;
if !setflags & (d = 15 || m = 15 || (d = 13 & m == 13)) then UNPREDICTABLE;

Directives -y

R Vilk

e #:1lowerl6:data
- What does that do?
- Why?

A6.7.78 MOVT

Move Top wnites an immediate value to the top halfword of the destination register. It does not affect the

contents of the bottom halfword.

Encoding T1 ARMv7-M
MONT<c> <Rd>,#<immlb>

1514131211109 8 7 6 5 4 3 2 1 0 1514131211109 8 7 6 5 4 3

’

1

0

11 110f1)1 0]1|1{0)0(mmmd4 (0| mm3

Rd

mm$

d = UInt(Rd); imml6 = immd:i:imm3:imm8;
if d IN {13,15} then UNPREDICTABLE;

Assembler syntax
MWNT<C><a> Rd>, #<inmlb>
where:

<C><Q> See Standard assembler syntax fields on page A6-7.
<Rd> Specifies the destination register.

<imm16> Specifies the immediate value to be wntten to <Rd>. It must be in the range 0-65535.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
R[d]<31:16> = imm16;
// R[d]<15:8> unchanged

Loads! ETr

R Vilk

e ldrb?
o ldrsb?

So what does the program _do_? S
"\{ 1
data:

.byte 0x12, 20, 0x20, -1

func:

mov r0, #O0

mov r4d, #0

movw rl, #:lowerl6:data

movt rl, #:upperl6:data
top: 1drb r2, [rl],1

add r4, rd4, r2

add r0, r0, #1

cmp r0, #4

bne top

, V
R Vilk

Questions?

Comments?

Discussion?

