
1

EECS 373
Design of Microprocessor-Based Systems

Website: www.eecs.umich.edu/courses/eecs373/

Ronald Dreslinski
University of Michigan

Lecture 1: Introduction, start on ARM ISA
September 7th 2016

Slides developed in part by
Prof. Dutta and Dr. Brehob

Folks

•  Prof. Ron Dreslinski
•  Matt Smith

–  Head lab instructor
–  Been doing 373 for about 15 years!

•  IAs:
–  Yifan Hao haoyifan@umich.edu
–  Daniel Synder snysly@umich.edu
–  Jay Mulani jmulani@umich.edu
–  Kevin Yang kbyang@umich.edu

2

What is an embedded system?

3

Embedded, everywhere

4

Embedded, Everywhere - Fitbit

5

6

What is driving the

embedded everywhere explosion?

7

Outline

Technology Trends

Course Description/Overview

Tools Overview/ISA start

8

Moore’s Law (a statement about economics):
IC transistor count doubles every 18-24 mo

Photo Credit: Intel

9

The number of computers per person grows

1950 1960 1970 1980 1990 2000 2010 2020
100m

1

10

100

1k

10k

100k

1M

10M

100M

1G

10G

100G

1T

10T

Si
ze

 (m
m

3)

Mainframe

Mini
Computer

Personal
Computer

Workstation

Smartphone

Smart
Sensors

1 per Enterprise

1 per Company

1 per
Professional

1 per person

Ubiquitous

1 per Family

1 per Engineer Laptop

100 – 1000’s
per person

lo
g

(p
eo

pl
e

pe
r c

om
pu

te
r)

[Bell et al. Computer,
1972, ACM, 2008]

10

Computer volume shrinks by 100x every decade

1950 1960 1970 1980 1990 2000 2010 2020
100m

1

10

100

1k

10k

100k

1M

10M

100M

1G

10G

100G

1T

10T

Si
ze

 (m
m

3)

Mainframe

Mini
Computer

Personal
Computer

Workstation

Smartphone

100x smaller
every decade
[Nakagawa08]

1 per Enterprise

1 per Company

1 per
Professional

1 per person

Ubiquitous

1 per Family

1 per Engineer

Laptop

100 – 1000’s
per person

Smart
Sensors

11

Price falls dramatically, and enables new applications

1950 1960 1970 1980 1990 2000 2010 2020
0.01

0.1

1

10

100

1000

10000

100000

In
fla

tio
n

A
dj

us
te

d
Pr

ic
e

(1
00

0s
 o

f U
SD

)

Mainframe

Mini
Computer

Personal
Computer

Workstation

Smartphone

Laptop

streaming
information
to/from the
physical
world

Number Crunching
Data Storage

productivity
interactive

Smart
Sensors

12

 “Roughly every decade a new,
lower priced computer class

forms based on a new
programming platform,
network, and interface

resulting in new usage and
the establishment of a new

industry.”

- Gordon Bell [1972,2008]

Bell’s Law: A new computer class every decade

12

Technology Scaling
•  Moore’s Law

–  Made transistors cheap

•  Dennard’s Scaling
–  Made them fast
–  And low-power

•  Result
–  Holding #T’s constant

•  Exponentially lower cost
•  Exponentially lower power

–  Small, cheap & low-power
•  Microcontrollers
•  Memory
•  Radios

Technology Innovations
•  MEMS technology

–  Micro-fabricated sensors

•  New memories
–  New cell structures (11T)
–  New tech (FeRAM, FinFET)

•  Near-threshold computing
–  Minimize active power
–  Minimize static power

•  New wireless systems
–  Radio architectures
–  Modulation schemes

•  Energy harvesting

13

What is driving Bell’s Law?

Corollary to Moore’s Law

UMich Phoenix Processor
Introduced 2008
Initial clock speed

106 kHz @ 0.5V Vdd
Number of transistors

92,499
Manufacturing technology

0.18 µ
Photo credits: Intel, U. Michigan

15

Broad availability of inexpensive, low-power, 32-bit MCUs
(with enough memory to do interesting things)

Hendy’s “Law”:
Pixels per dollar doubles annually

Credit: Barry Hendy/Wikipedia

Keeping pixels fixed,

size, power, cost fall

G. Kim, Z. Foo, Y, Lee, P. Pannuto, Y-S. Kuo, B. Kempke, M. Ghaed, S. Bang, I. Lee, Y. Kim, S. Jeong, P. Dutta, D. Sylvester, D. Blaauw,
“A Millimeter-Scale Wireless Imaging System with Continuous Motion Detection and Energy Harvesting,
In Symposium of VLSI Technology (VLSI’14), Jun. 2014.

Radio technologies enabling pervasive computing, IoT

Source: Steve Dean, Texas Instruments
http://eecatalog.com/medical/2009/09/23/current-and-future-trends-in-medical-electronics/

Established comms interfaces: 802.15.4, BLE, NFC

•  IEEE 802.15.4 (a.k.a. “ZigBee” stack)
–  Workhorse radio technology for sensornets
–  Widely adopted for low-power mesh protocols
–  Middle (6LoWPAN, RPL) and upper (CoAP layers)
–  Can last for years on a pair of AA batteries

•  Bluetooth Low-Energy (BLE)
–  Short-range RF technology
–  On phones and peripherals
–  Can beacon for years on coin cells

•  Near-Field Communications (NFC)
–  Asymmetric backscatter technology
–  Small (mobile) readers in smartphones
–  Large (stationary) readers in infrastructure
–  New: ambient backscatter communications

Emerging Proximal Interfaces:
Ultrasonic, Visible Light, Vibration

•  Ultrasonic
–  Small, low-power, short-range
–  Supports very low-power wakeup
–  Can support pairwise ranging of nodes

•  Visible Light
–  Enabled by pervasive LEDs and cameras
–  Supports indoor localization and comms
–  Easy to modify existing LED lighting

•  Vibration
–  Pervasive accelerometers
–  Pervasive Vibration motors
–  Bootstrap desktop area context

Non-volatile memory capacity & read/write bandwidth

Lower capacity but
Higher R/W speeds

and
Lower energy per
atomic operation

and
High write
endurance

MEMS Sensors:
Rapidly falling price and power of accelerometers

[Analog Devices, 2009]
ADXL345

10 µA @ 10 Hz @ 6 bits

25 µA @ 25 Hz

[ST Microelectronics, annc. 2009]

O(mA)

[Analog Devices, 2012]

ADXL362

1.8 µA @ 100 Hz @ 2V
300 nA wakeup mode

Energy harvesting and storage:
Small doesn’t mean powerless…

Thermoelectric Ambient
Energy Harvester [PNNL]

Shock Energy Harvesting
CEDRAT Technologies

Electrostatic Energy
Harvester [ICL]

Thin-film batteries

RF [Intel]

Piezoelectric
[Holst/IMEC]

Clare Solar Cell

23

Why study 32-bit MCUs and FPGAs?

24

MCU-32 and PLDs are tied in embedded market share

25

What differentiates these
products from one another?

FPGA Microprocessor
===== =============

26

MPU FPGA

27

Modern FPGAs: best of both worlds!

28

Why study the ARM architecture
(and the Cortex-M3 in particular)?

29

Lots of manufacturers ship ARM products

ARM is the big player

•  ARM has a huge market share
–  As of 2011 ARM has chips in about 90% of the world’s

mobile handsets
–  As of 2010 ARM has chips in 95% of the smartphone

market, 10% of the notebook market
•  Expected to hit 40% of the notebook market in

2015.
–  Heavy use in general embedded systems.

•  Cheap to use
–  ARM appears to get an average of 8¢ per device

(averaged over cheap and expensive chips).
•  Flexible

–  Spin your own designs.

30

31

Outline

Technology Trends

Course Description/Overview

Tools Overview/ISA start

Course goals

•  Learn to implement embedded systems including
hardware/software interfacing.

•  Learn to design embedded systems and how to
think about embedded software and hardware.

•  Have the opportunity to design and build non-
trivial projects involving both hardware and
software.

32

33

Prerequisites

•  EECS 270: Introduction to Logic Design
–  Combinational and sequential logic design
–  Logic minimization, propagation delays, timing

•  EECS 280: Programming and Intro Data Structures
–  C programming
–  Algorithms (e.g. sort) and data structures (e.g. lists)

•  EECS 370: Introduction to Computer Organization
–  Basic computer architecture
–  CPU control/datapath, memory, I/O
–  Compiler, assembler

Topics

•  Memory-mapped I/O
–  The idea of using memory addressed to talk to input

and output devices.
•  Switches, LEDs, hard drives, keyboards, motors

•  Interrupts
–  How to get the processor to become “event driven”

and react to things as they happen.

•  Working with Analog inputs
–  The real world isn’t digital!

•  Common devices and interfaces
–  Serial buses, timers, etc.

34

Example: Memory-mapped I/O

•  This is important.
–  It means our software can tell the hardware what to do.

•  In lab 3 you’ll design hardware on an FPGA which will can control a motor.
–  But more importantly, that hardware will be designed so the software

can tell the hardware exactly what to do with the motor. All by simply
writing to certain memory locations!

–  In the same way, the software can read memory locations to access data from
sensors etc… 35

Example: Anatomy of a timer system

36

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

...
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

Grades

Item Weight
====== =========
Labs (7) 25%
Project 25%
Exams 35% (15% midterm; 20% final)
HW /Guest talks 10%
Oral presentation 5%

•  Project and Exams tend to be the major
differentiators.

•  Class median is generally a low B+.

37

Time

•  You’ll need to assume you are going to spend a
lot of time in this class.
–  2-3 hours/week in lecture (we cancel a few classes

during project time)
–  8-12 hours/week working in lab

•  Expect more during project time; some labs are a bit
shorter.

–  ~20 hours (total) working on homework
–  ~20 hours (total) studying for exams.
–  ~8 hour (total) on your oral presentation

•  Averages out to about 15-20 hours/week pre-
project and about 20 during the project…
–  This is more than I’d like, but we’ve chosen to go with

state-of-the-art tools, and those generally have a heck
of a learning curve.

38

39

Labs

•  7 labs, 8 weeks, groups of 2
1.  FPGA + Hardware Tools
2.  MCU + Software Tools
3.  Memory + Memory-Mapped I/O
4.  Interrupts
5.  Timers and Counters
6.  Serial Bus Interfacing
7.  Data Converters (e.g. ADCs/DACs)

•  Labs are very time consuming.
–  As noted, students estimated 8-12 hours per lab with one lab

(which varied by group) taking longer.

Open-Ended Project

•  Goal: learn how to build embedded systems
–  By building an embedded system
–  Work in teams of 4
–  You design your own project

•  The major focus of the last third of the class.
–  Labs will be done and we will cancel some lectures and

generally try to keep you focused.

•  Important to start early.
–  After all the effort in the labs, it’s tempting to slack

for a bit. The best projects are those that get going
right away.

40

41

Homework

•  4-6 assignments
–  A few “mini” assignments

•  Mainly to get you up to speed on lab topics
–  A few “standard” assignments

•  Hit material we can’t do in lab.

•  Also a small part is for showing up to guest
lecturer(s)

Start today, Homework 1 due on Wednesday

Looking for me?

•  Office Hours in 2637 BBB
–  Tuesday 2-3pm
–  Thursday 3:30-4:30pm

•  Email to schedule other times as needed

42

43

Outline

Technology Trends

Course Description/Overview

Tools overview/ISA start

We are using Actel’s SmartFusion Evaluation Kit

44

 A2F200M3F-FGG484ES
–  200,000 System FPGA gates, 256 KB flash memory, 64 KB SRAM, and

additional distributed SRAM in the FPGA fabric and external memory
controller

–  Peripherals include Ethernet, DMAs, I2Cs, UARTs, timers, ADCs, DACs and
additional analog resources

•  USB connection for programming and debug from Actel's design tools
•  USB to UART connection to UART_0 for HyperTerminal examples
•  10/100 Ethernet interface with on-chip MAC and external PHY
•  Mixed-signal header for daughter card support

45

FPGA work

46

“Smart Design” configurator

47

Eclipse-based “Actel SoftConsole IDE”

48

Debugger is GDB-based. Includes command line.
Works really quite well.

49

ARM ISA

50

51

Major elements of an Instruction Set Architecture
(registers, memory, word size, endianess, conditions, instructions, addressing modes)

32-bits 32-bits

Endianess

	
	mov	r0,	#1	
	
	ld		r1,	[r0,#5]	
	
						r1=mem((r0)+5)	
	
	bne	loop	
	
	subs	r2,	#1	

Endianess

The endianess religious war: 284 years and counting!

•  Modern version
–  Danny Cohen
–  IEEE Computer, v14, #10
–  Published in 1981
–  Satire on CS religious war

•  Historical Inspiration
–  Jonathan Swift
–  Gulliver's Travels
–  Published in 1726
–  Satire on Henry-VIII’s split

with the Church
•  Now a major motion picture!

52

																														Memory					Value	
																														Offset		(LSB)	(MSB)	
																														======		===========	
uint8_t	a		=	1;															0x0000		01	02	FF	00	
uint8_t	b		=	2;	
uint16_t	c	=	255;	//	0x00FF	
uint32_t	d	=	0x12345678;						0x0004		78	56	34	12	

•  Little-Endian
–  LSB is at lower address

•  Big-Endian
–  MSB is at lower address

																														Memory					Value	
																														Offset		(LSB)	(MSB)	
																														======		===========	
uint8_t	a		=	1;															0x0000		01	02	00	FF	
uint8_t	b		=	2;	
uint16_t	c	=	255;	//	0x00FF	
uint32_t	d	=	0x12345678;						0x0004		12	34	56	78	

Addressing: Big Endian vs Little Endian (370 slide)

•  Endian-ness: ordering of bytes within a word
–  Little - increasing numeric significance with increasing

memory addresses
–  Big – The opposite, most significant byte first
–  MIPS is big endian, x86 is little endian

Instruction encoding

•  Instructions are encoded in machine language opcodes
•  Sometimes

–  Necessary to hand generate opcodes
–  Necessary to verify assembled code is correct

•  How?

Instructions	
movs	r0,	#10	
	
movs	r1,	#0	

AR
M

v7
 A

RM

Register	Value						Memory	Value	
001|00|000|00001010	(LSB)	(MSB)	
(msb)									(lsb)	0a	20	00	21	
001|00|001|00000000	

Assembly example

data:
 .byte 0x12, 20, 0x20, -1
func:
 mov r0, #0
 mov r4, #0
 movw r1, #:lower16:data
 movt r1, #:upper16:data
top: ldrb r2, [r1],1
 add r4, r4, r2
 add r0, r0, #1
 cmp r0, #4
 bne top

55

Instructions used

•  mov
–  Moves data from register or immediate.
–  Or also from shifted register or immediate!

•  the mov assembly instruction maps to a bunch of
different encodings!

–  If immediate it might be a 16-bit or 32-bit instruction.
•  Not all values possible
•  why?

•  movw
–  Actually an alias to mov.

•  “w” is “wide”
•  hints at 16-bit immediate.

56

From the ARMv7-M Architecture Reference Manual
(posted on the website under references)

57

There are similar entries for
move immediate, move shifted
(which actually maps to different
instructions) etc.

Directives

•  #:lower16:data
–  What does that do?
–  Why?

58

59

Loads!

•  ldrb?
•  ldrsb?

60

So what does the program _do_?

data:
 .byte 0x12, 20, 0x20, -1
func:
 mov r0, #0
 mov r4, #0
 movw r1, #:lower16:data
 movt r1, #:upper16:data
top: ldrb r2, [r1],1
 add r4, r4, r2
 add r0, r0, #1
 cmp r0, #4
 bne top

61

62

Questions?

Comments?

Discussion?

