
1	

EECS 373
Design of Microprocessor-Based Systems

Ron Dreslinski
University of Michigan

Lecture 2: Architecture, Assembly, and ABI
Sept. 12, 2016

Slides	developed	in	part	by		
Prof.	Du7a	and	Dr.	Brehob	

Admin Stuff

•  Website URL (again)
–  http://www.eecs.umich.edu/courses/eecs373/

•  HW1 Due on Wednesday

•  Schedule things:
–  Group formation meeting Monday 10/10 6:30-8:00
–  Midterm exam Monday 10/24 7:00-9:00 (sharp)

•  Tentative
–  373 Design Expo Monday 12/12

•  Time TBA (11am-2 most likely)
–  Final Exam, 12/21 1:30-3:30pm

2

Today…

ARM assembly example

Walk though of the ARM ISA

Lab tool flow

Start on Application Binary Interface (ABI)

3

4

Major elements of an Instruction Set Architecture
(registers, memory, word size, endianess, conditions, instructions, addressing modes)

32-bits 32-bits

Endianess

	
	mov	r0,	#1	
	
	ld		r1,	[r0,#5]	
	
										mem((r0)+5)	
	
	bne	loop	
	
	subs	r2,	#1	

Endianess

The endianess religious war: 284 years and counting!

•  Modern version
–  Danny Cohen
–  IEEE Computer, v14, #10
–  Published in 1981
–  Satire on CS religious war

•  Historical Inspiration
–  Jonathan Swift
–  Gulliver's Travels
–  Published in 1726
–  Satire on Henry-VIII’s split

with the Church
•  Now a major motion picture!

5

																														Memory					Value	
																														Offset		(LSB)	(MSB)	
																														======		===========	
uint8_t	a		=	1;															0x0000		01	02	FF	00	
uint8_t	b		=	2;	
uint16_t	c	=	255;	//	0x00FF	
uint32_t	d	=	0x12345678;						0x0004		78	56	34	12	

•  Little-Endian
–  LSB is at lower address

•  Big-Endian
–  MSB is at lower address

																														Memory					Value	
																														Offset		(LSB)	(MSB)	
																														======		===========	
uint8_t	a		=	1;															0x0000		01	02	00	FF	
uint8_t	b		=	2;	
uint16_t	c	=	255;	//	0x00FF	
uint32_t	d	=	0x12345678;						0x0004		12	34	56	78	

Addressing: Big Endian vs Little Endian (370 slide)

•  Endian-ness: ordering of bytes within a word
–  Little - increasing numeric significance with increasing

memory addresses
–  Big – The opposite, most significant byte first
–  MIPS is big endian, x86 is little endian

AR
M

v7
 A

RM

Instruction encoding

•  Instructions are encoded in machine language opcodes
•  Sometimes

–  Necessary to hand generate opcodes
–  Necessary to verify assembled code is correct

•  How?

Instructions	
movs	r0,	#10	
	
movs	r1,	#0	

Register	Value						Memory	Value	
001|00|000|00001010	(LSB)	(MSB)	
(msb)									(lsb)	0a	20	00	21	
001|00|001|00000000	

Assembly example

data:
 .byte 0x12, 20, 0x20, -1
func:
 mov r0, #0
 mov r4, #0
 movw r1, #:lower16:data
 movt r1, #:upper16:data
top: ldrb r2, [r1],#1
 add r4, r4, r2
 add r0, r0, #1
 cmp r0, #4
 bne top

8

Instructions used

•  mov
–  Moves data from register or immediate.
–  Or also from shifted register or immediate!

•  the mov assembly instruction maps to a bunch of
different encodings!

–  If immediate it might be a 16-bit or 32-bit instruction.

•  movw
–  Actually an alias to mov.

•  “w” is “wide”
•  hints at 16-bit immediate.

9

From the ARMv7-M Architecture Reference Manual
(posted on the website under references)

10

There are similar entries for
move immediate, move shifted
(which actually maps to different
instructions) etc.

Directives

•  #:lower16:data
–  What does that do?
–  Why?

11

12

Loads!

•  ldrb -- Load register byte
–  Note this takes an 8-bit value and moves it into a 32-bit

location!
•  Zeros out the top 24 bits.

•  ldrsb -- Load register signed byte
–  Note this also takes an 8-bit value and moves it into a

32-bit location!
•  Uses sign extension for the top 24 bits.

13

Addressing Modes

•  Offset Addressing
–  Offset is added or subtracted from base register
–  Result used as effective address for memory access
–  [<Rn>, <offset>]

•  Pre-indexed Addressing
–  Offset is applied to base register
–  Result used as effective address for memory access
–  Result written back into base register
–  [<Rn>, <offset>]!

•  Post-indexed Addressing
–  The address from the base register is used as the EA
–  The offset is applied to the base and then written back
–  [<Rn>], <offset>

So what does the program _do_?

data:
 .byte 0x12, 20, 0x20, -1
func:
 mov r0, #0
 mov r4, #0
 movw r1, #:lower16:data
 movt r1, #:upper16:data
top: ldrb r2, [r1],#1
 add r4, r4, r2
 add r0, r0, #1
 cmp r0, #4
 bne top

15

Today…

ARM assembly example

Walk though of the ARM ISA

Tool Flow

Start on Application Binary Interface (ABI)

16

17

An ISA defines the hardware/software interface

•  A “contract” between architects and programmers
•  Register set
•  Instruction set

–  Addressing modes
–  Word size
–  Data formats
–  Operating modes
–  Condition codes

•  Calling conventions
–  Really not part of the ISA (usually)
–  Rather part of the ABI
–  But the ISA often provides meaningful support.

ARM Architecture roadmap

18

A quick comment on the ISA:
From: ARMv7-M Architecture Reference Manual

19

20

ARM Cortex-M3 ISA

Register Set Address Space

Branching
Data processing

Load/Store
Exceptions

Miscellaneous

Instruction Set

32-bits 32-bits

Endianess Endianess

21

Mode dependent

Registers

22

Address Space

23

Instruction Encoding
ADD immediate

24

25

Branch

26

Data processing instructions

Many, Many More!

27

Load/Store instructions

28

Miscellaneous instructions

Addressing Modes (again)

•  Offset Addressing
–  Offset is added or subtracted from base register
–  Result used as effective address for memory access
–  [<Rn>, <offset>]

•  Pre-indexed Addressing
–  Offset is applied to base register
–  Result used as effective address for memory access
–  Result written back into base register
–  [<Rn>, <offset>]!

•  Post-indexed Addressing
–  The address from the base register is used as the EA
–  The offset is applied to the base and then written back
–  [<Rn>], <offset>

<offset> options

•  An immediate constant
–  #10

•  An index register
–  <Rm>

•  A shifted index register
–  <Rm>, LSL #<shift>

•  Lots of weird options…

Application Program Status Register (APSR)

Updating the APSR

•  SUB Rx, Ry
–  Rx = Rx - Ry
–  APSR unchanged

•  SUBS
–  Rx = Rx - Ry
–  APSR N, Z, C, V updated

•  ADD Rx, Ry
–  Rx = Rx + Ry
–  APSR unchanged

•  ADDS
–  Rx = Rx + Ry
–  APSR N, Z, C, V updated

Overflow and carry in APSR

unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);

signed_sum = SInt(x) + SInt(y) + UInt(carry_in);

result = unsigned_sum<N-1:0>; // == signed_sum<N-1:0>

carry_out = if UInt(result) == unsigned_sum then ’0’ else ’1’;

overflow = if SInt(result) == signed_sum then ’0’ else ’1’;

33

Conditional execution:
Append to many instructions for conditional execution

35

The ARM architecture “books” for this class

36

The ARM software tools “books” for this class

37

	.equ 	STACK_TOP,	0x20000800	
	.text	
	.syntax	unified	
	.thumb	
	.global	_start	
	.type 	start,	%function	

	
_start:	

	.word 	STACK_TOP,	start	
start:	

	movs	r0,	#10	
	movs	r1,	#0	

loop:	
	adds	r1,	r0	
	subs	r0,	#1	
	bne		loop	

deadloop:	
	b				deadloop	
	.end	

	

An ARM assembly language program for GNU

38

all:	
	arm-none-eabi-as	-mcpu=cortex-m3	-mthumb	example1.s	-o	example1.o	
	arm-none-eabi-ld	-Ttext	0x0	-o	example1.out	example1.o	
	arm-none-eabi-objcopy	-Obinary	example1.out	example.bin	
	arm-none-eabi-objdump	-S	example1.out	>	example1.list	

A simple Makefile

39

	.equ 	STACK_TOP,	0x20000800 		
	.text 	 	 	 		
	.syntax	unified	 	 		
	.thumb 	 	 	 		
	.global	_start 	 	 		
	.type 	start,	%function	 		

	
_start:	 	 	 	 		

	.word 	STACK_TOP,	start	 		
start: 	 	 	 	 		

	movs	r0,	#10 	 	 		
	movs	r1,	#0 	 	 		

loop: 	 	 	 	 		
	adds	r1,	r0 	 	 		
	subs	r0,	#1 	 	 		
	bne		loop 	 	 		

deadloop: 	 	 	 		
	b				deadloop 	 	 		
	.end 	 	 	 		

	

An ARM assembly language program for GNU

40

example1.out:					file	format	elf32-littlearm	
	
	
Disassembly	of	section	.text:	
	
00000000	<_start>:	
			0: 	20000800	 	.word 	0x20000800	
			4: 	00000009	 	.word 	0x00000009	
	
00000008	<start>:	
			8: 	200a						 	movs 	r0,	#10	
			a: 	2100						 	movs 	r1,	#0	
	
0000000c	<loop>:	
			c: 	1809						 	adds 	r1,	r1,	r0	
			e: 	3801						 	subs 	r0,	#1	
		10: 	d1fc						 	bne.n 	c	<loop>	
	
00000012	<deadloop>:	
		12: 	e7fe						 	b.n 	12	<deadloop>	

Disassembled object code

Today…

ARM assembly example

Walk though of the ARM ISA

Tool Flow

Start on Application Binary Interface (ABI)

41

42

How does an assembly language program
get turned into a executable program image?

Assembly	
files	(.s)	

Object	
files	(.o)	

as	
(assembler)	

ld	
(linker)	

	
Memory	
layout	

Linker	
script	(.ld)	

Executable	
image	file	

Binary	program	
file	(.bin)	

Disassembled	
code	(.lst)	

43

What are the real GNU executable names for the ARM?

•  Just add the prefix “arm-none-eabi-” prefix
•  Assembler (as)

–  arm-none-eabi-as

•  Linker (ld)
–  arm-none-eabi-ld

•  Object copy (objcopy)
–  arm-none-eabi-objcopy

•  Object dump (objdump)
–  arm-none-eabi-objdump

•  C Compiler (gcc)
–  arm-none-eabi-gcc

•  C++ Compiler (g++)
–  arm-none-eabi-g++

44

all:	
	arm-none-eabi-as	-mcpu=cortex-m3	-mthumb	example1.s	-o	example1.o	
	arm-none-eabi-ld	-Ttext	0x0	-o	example1.out	example1.o	
	arm-none-eabi-objcopy	-Obinary	example1.out	example1.bin	
	arm-none-eabi-objdump	-S	example1.out	>	example1.lst	

A simple (hardcoded) Makefile example

45

What information does the disassembled file provide?

	.equ 	STACK_TOP,	0x20000800		
	.text	
	.syntax 	unified	
	.thumb	
	.global 	_start	
	.type 	start,	%function	

	
_start:	

	.word 	STACK_TOP,	start	
start:	

	movs	r0,	#10	
	movs	r1,	#0	

loop:	
	adds	r1,	r0	
	subs	r0,	#1	
	bne		loop	

deadloop:	
	b				deadloop	
	.end	

	
	

example1.out:					file	format	elf32-littlearm	
	
	
Disassembly	of	section	.text:	
	
00000000	<_start>:	
			0: 	20000800	 	.word 	0x20000800	
			4: 	00000009	 	.word 	0x00000009	
	
00000008	<start>:	
			8: 	200a							movs 	r0,	#10	
			a: 	2100							movs 	r1,	#0	
	
0000000c	<loop>:	
			c: 	1809							adds 	r1,	r1,	r0	
			e: 	3801							subs 	r0,	#1	
		10: 	d1fc							bne.n 	c	<loop>	
	
00000012	<deadloop>:	
		12: 	e7fe							b.n 	12	<deadloop>	
	

all:	
	arm-none-eabi-as	-mcpu=cortex-m3	-mthumb	example1.s	-o	example1.o	
	arm-none-eabi-ld	-Ttext	0x0	-o	example1.out	example1.o	
	arm-none-eabi-objcopy	-Obinary	example1.out	example1.bin	
	arm-none-eabi-objdump	-S	example1.out	>	example1.lst	

46

	.equ 	STACK_TOP,	0x20000800 	/*	Equates	symbol	to	value	*/	
	.text 	 	 	 	/*	Tells	AS	to	assemble	region	*/	
	.syntax	unified	 	 	/*	Means	language	is	ARM	UAL	*/	
	.thumb 	 	 	 	/*	Means	ARM	ISA	is	Thumb	*/	
	.global	_start 	 	 	/*	.global	exposes	symbol	*/	
	 	 	 	 	/*	_start	label	is	the	beginning	*/	
	 	 	 	 	/*	...of	the	program	region	*/	
	.type 	start,	%function	 	/*	Specifies	start	is	a	function	*/	
	 	 	 	 	/*	start	label	is	reset	handler	*/	

_start:	 	 	 	 		
	.word 	STACK_TOP,	start	 	/*	Inserts	word	0x20000800	*/	
	 	 	 	 	/*	Inserts	word	(start)	*/	

start: 	 	 	 	 		
	movs	r0,	#10 	 	 	/*	We’ve	seen	the	rest	...	*/	
	movs	r1,	#0 	 	 		

loop: 	 	 	 	 		
	adds	r1,	r0 	 	 		
	subs	r0,	#1 	 	 		
	bne		loop 	 	 		

deadloop: 	 	 	 		
	b				deadloop 	 	 		
	.end	

	

What are the elements of a real assembly program?

47

$	arm-none-eabi-as	-mcpu=cortex-m3	-mthumb	example1.s	-o	example1.o	
	
	

How are assembly files assembled?

•  $ arm-none-eabi-as
–  Useful options

•  -mcpu
•  -mthumb
•  -o

48

How does a mixed C/Assembly program
get turned into a executable program image?

Assembly	
files	(.s)	

Object	
files	(.o)	

as	
(assembler)	

gcc	
(compile	
+	link)	

	
Memory	
layout	

Linker	
script	(.ld)	

Executable	
image	file	

Binary	program	
file	(.bin)	

Disassembled	
Code	(.lst)	

ld	
(linker)	

Library	object	
files	(.o)	

C	files	(.c)	

Today…

ARM assembly example

Walk though of the ARM ISA

Tool Flow

Start on Application Binary Interface (ABI)

49

50

Outline

•  ARM Cortex-M3 ISA and example

•  Tool flow

•  ABI (intro)

51

ABI quote

•  A subroutine must preserve the contents of the
registers r4-r8, r10, r11 and SP (and r9 in PCS
variants that designate r9 as v6).

52

53

Questions?

Comments?

Discussion?

