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Admin Stuff 

•  Website URL (again) 
–  http://www.eecs.umich.edu/courses/eecs373/ 

 
 

•  HW1 Due on Wednesday 

•  Schedule things: 
–  Group formation meeting Monday 10/10 6:30-8:00 
–  Midterm exam Monday 10/24 7:00-9:00 (sharp) 

•  Tentative 
–  373 Design Expo Monday 12/12 

•  Time TBA (11am-2 most likely) 
–  Final Exam, 12/21 1:30-3:30pm 
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Today… 

ARM assembly example 
 

Walk though of the ARM ISA 
 

Lab tool flow 
 

Start on Application Binary Interface (ABI) 
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Major elements of an Instruction Set Architecture 
(registers, memory, word size, endianess, conditions, instructions, addressing modes) 

32-bits 32-bits 

Endianess 

	
	mov	r0,	#1	
	
	ld		r1,	[r0,#5]	
	
										mem((r0)+5)	
	
	bne	loop	
	
	subs	r2,	#1	

Endianess 



The endianess religious war: 284 years and counting! 

•  Modern version 
–  Danny Cohen 
–  IEEE Computer, v14, #10 
–  Published in 1981 
–  Satire on CS religious war 

•  Historical Inspiration 
–  Jonathan Swift 
–  Gulliver's Travels 
–  Published in 1726  
–  Satire on Henry-VIII’s split 

with the Church 
•  Now a major motion picture! 
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																														Memory					Value	
																														Offset		(LSB)	(MSB)	
																														======		===========	
uint8_t	a		=	1;															0x0000		01	02	FF	00	
uint8_t	b		=	2;	
uint16_t	c	=	255;	//	0x00FF	
uint32_t	d	=	0x12345678;						0x0004		78	56	34	12	

•  Little-Endian 
–  LSB is at lower address 

•  Big-Endian 
–  MSB is at lower address 

																														Memory					Value	
																														Offset		(LSB)	(MSB)	
																														======		===========	
uint8_t	a		=	1;															0x0000		01	02	00	FF	
uint8_t	b		=	2;	
uint16_t	c	=	255;	//	0x00FF	
uint32_t	d	=	0x12345678;						0x0004		12	34	56	78	



Addressing: Big Endian vs Little Endian (370 slide) 

•  Endian-ness: ordering of bytes within a word 
–  Little - increasing numeric significance with increasing 

memory addresses 
–  Big – The opposite, most significant byte first 
–  MIPS is big endian, x86 is little endian 



AR
M

v7
 A

RM
 

Instruction encoding 

•  Instructions are encoded in machine language opcodes 
•  Sometimes 

–  Necessary to hand generate opcodes 
–  Necessary to verify assembled code is correct 

•  How? 

Instructions	
movs	r0,	#10	
	
movs	r1,	#0	

Register	Value						Memory	Value	
001|00|000|00001010	(LSB)	(MSB)	
(msb)									(lsb)	0a	20	00	21	
001|00|001|00000000	



Assembly example 

data: 
    .byte 0x12, 20, 0x20, -1 
func: 
        mov r0, #0 
        mov r4, #0 
        movw   r1, #:lower16:data 
        movt   r1, #:upper16:data 
top:    ldrb   r2, [r1],#1 
        add r4, r4, r2 
        add r0, r0, #1 
        cmp r0, #4 
        bne top 
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Instructions used 

•  mov 
–  Moves data from register or immediate. 
–  Or also from shifted register or immediate! 

•  the mov assembly instruction maps to a bunch of 
different encodings! 

–  If immediate it might be a 16-bit or 32-bit instruction. 

•  movw 
–  Actually an alias to mov. 

•  “w” is “wide” 
•  hints at 16-bit immediate. 
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From the ARMv7-M Architecture Reference Manual 
(posted on the website under references) 
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There are similar entries for 
move immediate, move shifted 
(which actually maps to different  
instructions) etc. 



Directives 

•  #:lower16:data 
–  What does that do? 
–  Why? 
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Loads! 

•  ldrb -- Load register byte 
–  Note this takes an 8-bit value and moves it into a 32-bit 

location! 
•  Zeros out the top 24 bits. 

•  ldrsb -- Load register signed byte 
–  Note this also takes an 8-bit value and moves it into a 

32-bit location! 
•  Uses sign extension for the top 24 bits. 
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Addressing Modes 

•  Offset Addressing 
–  Offset is added or subtracted from base register 
–  Result used as effective address for memory access 
–  [<Rn>, <offset>] 

•  Pre-indexed Addressing 
–  Offset is applied to base register 
–  Result used as effective address for memory access 
–  Result written back into base register 
–  [<Rn>, <offset>]! 

•  Post-indexed Addressing 
–  The address from the base register is used as the EA 
–  The offset is applied to the base and then written back 
–  [<Rn>], <offset> 



So what does the program _do_? 

data: 
    .byte 0x12, 20, 0x20, -1 
func: 
        mov r0, #0 
        mov r4, #0 
        movw   r1, #:lower16:data 
        movt   r1, #:upper16:data 
top:    ldrb   r2, [r1],#1 
        add r4, r4, r2 
        add r0, r0, #1 
        cmp r0, #4 
        bne top 
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Today… 

ARM assembly example 
 

Walk though of the ARM ISA 
 

Tool Flow 
 

Start on Application Binary Interface (ABI) 
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An ISA defines the hardware/software interface 

•  A “contract” between architects and programmers 
•  Register set 
•  Instruction set 

–  Addressing modes 
–  Word size 
–  Data formats 
–  Operating modes 
–  Condition codes 

•  Calling conventions  
–  Really not part of the ISA (usually) 
–  Rather part of the ABI 
–  But the ISA often provides meaningful support. 



ARM Architecture roadmap 
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A quick comment on the ISA: 
From: ARMv7-M Architecture Reference Manual 
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ARM Cortex-M3 ISA 

Register Set Address Space 

Branching 
Data processing 

Load/Store 
Exceptions 

Miscellaneous 

Instruction Set 

32-bits 32-bits 

Endianess Endianess 
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Mode dependent 

Registers 
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Address Space 



23 

Instruction Encoding 
ADD immediate 
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Branch 
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Data processing instructions 

Many, Many More! 
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Load/Store instructions 
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Miscellaneous instructions 



Addressing Modes (again) 

•  Offset Addressing 
–  Offset is added or subtracted from base register 
–  Result used as effective address for memory access 
–  [<Rn>, <offset>] 

•  Pre-indexed Addressing 
–  Offset is applied to base register 
–  Result used as effective address for memory access 
–  Result written back into base register 
–  [<Rn>, <offset>]! 

•  Post-indexed Addressing 
–  The address from the base register is used as the EA 
–  The offset is applied to the base and then written back 
–  [<Rn>], <offset> 



<offset> options 

•  An immediate constant 
–  #10 

•  An index register 
–  <Rm> 

•  A shifted index register 
–  <Rm>, LSL #<shift> 

•  Lots of weird options… 



Application Program Status Register (APSR) 



Updating the APSR 

•  SUB Rx, Ry 
–  Rx = Rx - Ry 
–  APSR unchanged 

•  SUBS 
–  Rx = Rx - Ry 
–  APSR N, Z, C, V updated 

•  ADD Rx, Ry 
–  Rx = Rx + Ry 
–  APSR unchanged 

•  ADDS 
–  Rx = Rx + Ry 
–  APSR N, Z, C, V updated 



Overflow and carry in APSR  

 
unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in); 
 
signed_sum = SInt(x) + SInt(y) + UInt(carry_in); 
 
result = unsigned_sum<N-1:0>; // == signed_sum<N-1:0> 
 
carry_out = if UInt(result) == unsigned_sum then ’0’ else ’1’; 
 
overflow = if SInt(result) == signed_sum then ’0’ else ’1’; 
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Conditional execution: 
Append to many instructions for conditional execution 
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The ARM architecture “books” for this class 
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The ARM software tools “books” for this class 
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	.equ 	STACK_TOP,	0x20000800	
	.text	
	.syntax	unified	
	.thumb	
	.global	_start	
	.type 	start,	%function	

	
_start:	

	.word 	STACK_TOP,	start	
start:	

	movs	r0,	#10	
	movs	r1,	#0	

loop:	
	adds	r1,	r0	
	subs	r0,	#1	
	bne		loop	

deadloop:	
	b				deadloop	
	.end	

	

An ARM assembly language program for GNU 
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all:	
	arm-none-eabi-as	-mcpu=cortex-m3	-mthumb	example1.s	-o	example1.o	
	arm-none-eabi-ld	-Ttext	0x0	-o	example1.out	example1.o	
	arm-none-eabi-objcopy	-Obinary	example1.out	example.bin	
	arm-none-eabi-objdump	-S	example1.out	>	example1.list	

A simple Makefile 
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	.equ 	STACK_TOP,	0x20000800 		
	.text 	 	 	 		
	.syntax	unified	 	 		
	.thumb 	 	 	 		
	.global	_start 	 	 		
	.type 	start,	%function	 		

	
_start:	 	 	 	 		

	.word 	STACK_TOP,	start	 		
start: 	 	 	 	 		

	movs	r0,	#10 	 	 		
	movs	r1,	#0 	 	 		

loop: 	 	 	 	 		
	adds	r1,	r0 	 	 		
	subs	r0,	#1 	 	 		
	bne		loop 	 	 		

deadloop: 	 	 	 		
	b				deadloop 	 	 		
	.end 	 	 	 		

	

An ARM assembly language program for GNU 
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example1.out:					file	format	elf32-littlearm	
	
	
Disassembly	of	section	.text:	
	
00000000	<_start>:	
			0: 	20000800	 	.word 	0x20000800	
			4: 	00000009	 	.word 	0x00000009	
	
00000008	<start>:	
			8: 	200a						 	movs 	r0,	#10	
			a: 	2100						 	movs 	r1,	#0	
	
0000000c	<loop>:	
			c: 	1809						 	adds 	r1,	r1,	r0	
			e: 	3801						 	subs 	r0,	#1	
		10: 	d1fc						 	bne.n 	c	<loop>	
	
00000012	<deadloop>:	
		12: 	e7fe						 	b.n 	12	<deadloop>	

Disassembled object code 



Today… 

ARM assembly example 
 

Walk though of the ARM ISA 
 

Tool Flow 
 

Start on Application Binary Interface (ABI) 
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How does an assembly language program  
get turned into a executable program image? 

Assembly	
files	(.s)	

Object	
files	(.o)	

as	
(assembler)	

ld	
(linker)	

	
Memory	
layout	

Linker	
script	(.ld)	

Executable	
image	file	

Binary	program	
file	(.bin)	

Disassembled	
code	(.lst)	
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What are the real GNU executable names for the ARM? 

•  Just add the prefix “arm-none-eabi-” prefix 
•  Assembler (as) 

–  arm-none-eabi-as 

•  Linker (ld) 
–  arm-none-eabi-ld 

•  Object copy (objcopy) 
–  arm-none-eabi-objcopy 

•  Object dump (objdump) 
–  arm-none-eabi-objdump 

•  C Compiler (gcc) 
–  arm-none-eabi-gcc 

•  C++ Compiler (g++) 
–  arm-none-eabi-g++ 
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all:	
	arm-none-eabi-as	-mcpu=cortex-m3	-mthumb	example1.s	-o	example1.o	
	arm-none-eabi-ld	-Ttext	0x0	-o	example1.out	example1.o	
	arm-none-eabi-objcopy	-Obinary	example1.out	example1.bin	
	arm-none-eabi-objdump	-S	example1.out	>	example1.lst	

A simple (hardcoded) Makefile example 
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What information does the disassembled file provide? 

	.equ 	STACK_TOP,	0x20000800		
	.text	
	.syntax 	unified	
	.thumb	
	.global 	_start	
	.type 	start,	%function	

	
_start:	

	.word 	STACK_TOP,	start	
start:	

	movs	r0,	#10	
	movs	r1,	#0	

loop:	
	adds	r1,	r0	
	subs	r0,	#1	
	bne		loop	

deadloop:	
	b				deadloop	
	.end	

	
	

example1.out:					file	format	elf32-littlearm	
	
	
Disassembly	of	section	.text:	
	
00000000	<_start>:	
			0: 	20000800	 	.word 	0x20000800	
			4: 	00000009	 	.word 	0x00000009	
	
00000008	<start>:	
			8: 	200a							movs 	r0,	#10	
			a: 	2100							movs 	r1,	#0	
	
0000000c	<loop>:	
			c: 	1809							adds 	r1,	r1,	r0	
			e: 	3801							subs 	r0,	#1	
		10: 	d1fc							bne.n 	c	<loop>	
	
00000012	<deadloop>:	
		12: 	e7fe							b.n 	12	<deadloop>	
	

all:	
	arm-none-eabi-as	-mcpu=cortex-m3	-mthumb	example1.s	-o	example1.o	
	arm-none-eabi-ld	-Ttext	0x0	-o	example1.out	example1.o	
	arm-none-eabi-objcopy	-Obinary	example1.out	example1.bin	
	arm-none-eabi-objdump	-S	example1.out	>	example1.lst	
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	.equ 	STACK_TOP,	0x20000800 	/*	Equates	symbol	to	value	*/	
	.text 	 	 	 	/*	Tells	AS	to	assemble	region	*/	
	.syntax	unified	 	 	/*	Means	language	is	ARM	UAL	*/	
	.thumb 	 	 	 	/*	Means	ARM	ISA	is	Thumb	*/	
	.global	_start 	 	 	/*	.global	exposes	symbol	*/	
	 	 	 	 	/*	_start	label	is	the	beginning	*/	
	 	 	 	 	/*	...of	the	program	region	*/	
	.type 	start,	%function	 	/*	Specifies	start	is	a	function	*/	
	 	 	 	 	/*	start	label	is	reset	handler	*/	

_start:	 	 	 	 		
	.word 	STACK_TOP,	start	 	/*	Inserts	word	0x20000800	*/	
	 	 	 	 	/*	Inserts	word	(start)	*/	

start: 	 	 	 	 		
	movs	r0,	#10 	 	 	/*	We’ve	seen	the	rest	...	*/	
	movs	r1,	#0 	 	 		

loop: 	 	 	 	 		
	adds	r1,	r0 	 	 		
	subs	r0,	#1 	 	 		
	bne		loop 	 	 		

deadloop: 	 	 	 		
	b				deadloop 	 	 		
	.end	

	

What are the elements of a real assembly program? 
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$	arm-none-eabi-as	-mcpu=cortex-m3	-mthumb	example1.s	-o	example1.o	
	
	

How are assembly files assembled? 

•  $ arm-none-eabi-as 
–  Useful options 

•  -mcpu 
•  -mthumb 
•  -o 
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How does a mixed C/Assembly program  
get turned into a executable program image? 

Assembly	
files	(.s)	

Object	
files	(.o)	

as	
(assembler)	

gcc	
(compile	
+	link)	

	
Memory	
layout	

Linker	
script	(.ld)	

Executable	
image	file	

Binary	program	
file	(.bin)	

Disassembled	
Code	(.lst)	

ld	
(linker)	

Library	object	
files	(.o)	

C	files	(.c)	



Today… 

ARM assembly example 
 

Walk though of the ARM ISA 
 

Tool Flow 
 

Start on Application Binary Interface (ABI) 
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Outline 

 
 
•  ARM Cortex-M3 ISA and example 

•  Tool flow 

•  ABI (intro) 
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ABI quote 

•  A subroutine must preserve the contents of the 
registers r4-r8, r10, r11 and SP (and r9 in PCS 
variants that designate r9 as v6).  
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Questions? 
 

Comments? 
 

Discussion? 


