
1

EECS 373
Design of Microprocessor-Based Systems

Ron Dreslinski
University of Michigan

Lecture 3: Toolchain, ABI, Memory Mapped I/O
September 14th, 2016

Slides developed in part by
Prof. Dutta and Dr. Brehob

2

Announcements

•  HW2 Released on Friday, Due 9/26
•  Exam and Project Meeting Rooms/Times

–  Project Meeting: Monday October 10, 6:30-8pm, 1003 EECS
–  Midterm Exam: Monday October 24, 7-9pm, 1500 EECS

•  Want to learn more about hands-on embedded
systems?
–  https://www.eecs.umich.edu/hub/
–  Lessons on Soldering, PCB design, and using simple boards

(Arduino, etc.)
–  Office hours staffed by PhD students in embedded systems.

•  Useful for talking to about projects (either class or own).

3

Outline

•  Assembly wrap-up

•  Tool chain

•  ABI

•  Basic memory-mapped I/O

4

Instruction Encoding
ADD immediate

5

6

Branch

7

Data processing instructions

Many, Many More!

8

Load/Store instructions

9

Miscellaneous instructions

Addressing Modes (again)

•  Offset Addressing
–  Offset is added or subtracted from base register
–  Result used as effective address for memory access
–  [<Rn>, <offset>]

•  Pre-indexed Addressing
–  Offset is applied to base register
–  Result used as effective address for memory access
–  Result written back into base register
–  [<Rn>, <offset>]!

•  Post-indexed Addressing
–  The address from the base register is used as the EA
–  The offset is applied to the base and then written back
–  [<Rn>], <offset>

<offset> options

•  An immediate constant
–  #10

•  An index register
–  <Rm>

•  A shifted index register
–  <Rm>, LSL #<shift>

•  Lots of weird options…

Application Program Status Register (APSR)

Updating the APSR

•  SUB Rx, Ry
–  Rx = Rx - Ry
–  APSR unchanged

•  SUBS
–  Rx = Rx - Ry
–  APSR N, Z, C, V updated

•  ADD Rx, Ry
–  Rx = Rx + Ry
–  APSR unchanged

•  ADDS
–  Rx = Rx + Ry
–  APSR N, Z, C, V updated

Conditional execution:
Append to many instructions for conditional execution

15

The ARM architecture “books” for this class

16

The ARM software tools “books” for this class

17

	.equ 	STACK_TOP,	0x20000800 		
	.text 	 	 	 		
	.syntax	unified	 	 		
	.thumb 	 	 	 		
	.global	_start 	 	 		
	.type 	start,	%function	 		

	
_start:	 	 	 	 		

	.word 	STACK_TOP,	start	 		
start: 	 	 	 	 		

	movs	r0,	#10 	 	 		
	movs	r1,	#0 	 	 		

loop: 	 	 	 	 		
	adds	r1,	r0 	 	 		
	subs	r0,	#1 	 	 		
	bne		loop 	 	 		

deadloop: 	 	 	 		
	b				deadloop 	 	 		
	.end 	 	 	 		

	

An ARM assembly language program for GNU

18

example1.out:					file	format	elf32-littlearm	
	
	
Disassembly	of	section	.text:	
	
00000000	<_start>:	
			0: 	20000800	 	.word 	0x20000800	
			4: 	00000009	 	.word 	0x00000009	
	
00000008	<start>:	
			8: 	200a						 	movs 	r0,	#10	
			a: 	2100						 	movs 	r1,	#0	
	
0000000c	<loop>:	
			c: 	1809						 	adds 	r1,	r1,	r0	
			e: 	3801						 	subs 	r0,	#1	
		10: 	d1fc						 	bne.n 	c	<loop>	
	
00000012	<deadloop>:	
		12: 	e7fe						 	b.n 	12	<deadloop>	

Disassembled object code

19

Outline

•  Review

•  Tool chain

•  ABI

•  Basic memory-mapped I/O

20

all:	
	arm-none-eabi-as	-mcpu=cortex-m3	-mthumb	example1.s	-o	example1.o	
	arm-none-eabi-ld	-Ttext	0x0	-o	example1.out	example1.o	
	arm-none-eabi-objcopy	-Obinary	example1.out	example.bin	
	arm-none-eabi-objdump	-S	example1.out	>	example1.list	

A simple Makefile

21

How does an assembly language program
get turned into a executable program image?

Assembly	
files	(.s)	

Object	
files	(.o)	

as	
(assembler)	

ld	
(linker)	

	
Memory	
layout	

Linker	
script	(.ld)	

Executable	
image	file	

Binary	program	
file	(.bin)	

Disassembled	
code	(.lst)	

Linker script

OUTPUT_FORMAT("elf32-littlearm")
OUTPUT_ARCH(arm)
ENTRY(main)

MEMORY
{
 /* SmartFusion internal eSRAM */
 ram (rwx) : ORIGIN = 0x20000000, LENGTH = 64k
}

SECTIONS
{
 .text :
 {
 . = ALIGN(4);
 (.text)

 . = ALIGN(4);
 _etext = .;
 } >ram
}
end = .;

•  Specifies little-endian arm in ELF
format.

•  Specifies ARM CPU
•  Should start executing at label named

“main”
•  We have 64k of memory starting at

0x20000000. You can read, write and
execute out of it. We’ve named it
“ram”

•  “.” is a reference to the current
memory location

•  First align to a word (4 byte) boundry
•  Place all sections that include .text at

the start (* here is a wildcard)
•  Define a label named _etext to be the

current address.
•  Put it all in the memory location

defined by the ram memory location.

22

23

What information does the disassembled file provide?

	.equ 	STACK_TOP,	0x20000800		
	.text	
	.syntax 	unified	
	.thumb	
	.global 	_start	
	.type 	start,	%function	

	
_start:	

	.word 	STACK_TOP,	start	
start:	

	movs	r0,	#10	
	movs	r1,	#0	

loop:	
	adds	r1,	r0	
	subs	r0,	#1	
	bne		loop	

deadloop:	
	b				deadloop	
	.end	

	
	

example1.out:					file	format	elf32-littlearm	
	
	
Disassembly	of	section	.text:	
	
00000000	<_start>:	
			0: 	20000800	 	.word 	0x20000800	
			4: 	00000009	 	.word 	0x00000009	
	
00000008	<start>:	
			8: 	200a							movs 	r0,	#10	
			a: 	2100							movs 	r1,	#0	
	
0000000c	<loop>:	
			c: 	1809							adds 	r1,	r1,	r0	
			e: 	3801							subs 	r0,	#1	
		10: 	d1fc							bne.n 	c	<loop>	
	
00000012	<deadloop>:	
		12: 	e7fe							b.n 	12	<deadloop>	
	

all:	
	arm-none-eabi-as	-mcpu=cortex-m3	-mthumb	example1.s	-o	example1.o	
	arm-none-eabi-ld	-Ttext	0x0	-o	example1.out	example1.o	
	arm-none-eabi-objcopy	-Obinary	example1.out	example1.bin	
	arm-none-eabi-objdump	-S	example1.out	>	example1.lst	

24

How does a mixed C/Assembly program
get turned into a executable program image?

Assembly	
files	(.s)	

Object	
files	(.o)	

as	
(assembler)	

gcc	
(compile	
+	link)	

	
Memory	
layout	

Linker	
script	(.ld)	

Executable	
image	file	

Binary	program	
file	(.bin)	

Disassembled	
Code	(.lst)	

ld	
(linker)	

Library	object	
files	(.o)	

C	files	(.c)	

25

Outline

•  Review

•  Tool chain

•  ABI

•  Basic memory-mapped I/O

26

ABI Basic Rules

1.  A subroutine must preserve the contents of the
registers r4-11 and SP
–  Let’s be careful with r9 though.

2.  Arguments are passed though r0 to r3
–  If we need more, we put a pointer into memory in one

of the registers.
•  We’ll worry about that later.

3.  Return value is placed in r0
–  r0 and r1 if 64-bits.

4.  Allocate space on stack as needed. Use it as
needed.
–  Put it back when done…
–  Keep word aligned.

27

Other useful factoids

•  Stack grows down.
–  And pointed to by “sp”

•  Address we need to go back to in “lr”

And useful things for the example
•  Assembly instructions

–  add adds two values
–  mul multiplies two values
–  bx branch to register

28

Let’s write a simple ABI routine

•  int bob(int a, int b)
–  returns a2 + b2

•  Instructions you might need
–  add adds two values
–  mul multiplies two values
–  bx branch to register

29

Same thing, but for no good reason using the stack

•  int bob(int a, int b)
–  returns a2 + b2

30

Some disassembly
•  0x20000490 <bob>: push {r7}
•  0x20000492 <bob+2>: sub sp, #20
•  0x20000494 <bob+4>: add r7, sp, #0
•  0x20000496 <bob+6>: str r0, [r7, #4]
•  0x20000498 <bob+8>: str r1, [r7, #0]
•  x=a*a;
•  0x2000049a <bob+10>: ldr r3, [r7, #4]
•  0x2000049c <bob+12>: ldr r2, [r7, #4]
•  0x2000049e <bob+14>: mul.w r3, r2, r3
•  0x200004a2 <bob+18>: str r3, [r7, #8]
•  y=b*b;
•  0x200004a4 <bob+20>: ldr r3, [r7, #0]
•  0x200004a6 <bob+22>: ldr r2, [r7, #0]
•  0x200004a8 <bob+24>: mul.w r3, r2, r3
•  0x
•  x=x+y;
•  0x200004ae <bob+30>: ldr r2, [r7, #8]
•  0x200004b0 <bob+32>: ldr r3, [r7, #12]
•  0x200004b2 <bob+34>: add r3, r2
•  0x200004b4 <bob+36>: str r3, [r7, #8]
•  0x200004ac <bob+28>: str r3, [r7, #12]

•  return(x);
•  0x200004b6 <bob+38>: ldr r3, [r7, #8]
•  }
•  0x200004b8 <bob+40>: mov r0, r3
•  0x200004ba <bob+42>: add.w r7, r7, #20
•  0x200004be <bob+46>: mov sp, r7
•  0x200004c0 <bob+48>: pop {r7}
•  0x200004c2 <bob+50>: bx lr

31

int bob(int a, int b)
{
 int x, y;
 x=a*a;
 y=b*b;
 x=x+y;
 return(x);
}

32

Outline

•  Review

•  Tool chain

•  ABI

•  Basic memory-mapped I/O

Memory-mapped I/O

•  The idea is really simple
–  Instead of real memory at a given memory address,

have an I/O device respond.
•  Huh?

•  Example:
–  Let’s say we want to have an LED turn on if we write a

“1” to memory location 5.
–  Further, let’s have a button we can read (pushed or

unpushed) by reading address 4.
•  If pushed, it returns a 1.
•  If not pushed, it returns a 0.

33

Now…

•  How do you get that to happen?
–  We could just say “magic” but that’s not very helpful.
–  Let’s start by detailing a simple bus and hooking

hardware up to it.

•  We’ll work on a real bus next time!

34

Basic example

•  Discuss a basic bus protocol
– Asynchronous (no clock)
–  Initiator and Target
– REQ#, ACK#, Data[7:0], ADS[7:0], CMD

•  CMD=0 is read, CMD=1 is write.
•  REQ# low means initiator is requesting something.
•  ACK# low means target has done its job.

A read transaction

•  Say initiator wants to read location 0x24
–  Initiator sets ADS=0x24, CMD=0.
–  Initiator then sets REQ# to low. (why do we need a delay?

How much of a delay?)
–  Target sees read request.
–  Target drives data onto data bus.
–  Target then sets ACK# to low.
–  Initiator grabs the data from the data bus.
–  Initiator sets REQ# to high, stops driving ADS and CMD
–  Target stops driving data, sets ACK# to high terminating

the transaction

Read transaction

ADS[7:0]

CMD

Data[7:0]

REQ#

ACK#

?? ?? 0x24

?? ?? 0x55

 A B C D E F G HI

A write transaction
(write 0xF4 to location 0x31)

–  Initiator sets ADS=0x31, CMD=1, Data=0xF4
–  Initiator then sets REQ# to low.
– Target sees write request.
– Target reads data from data bus. (Just has to store in a

register, need not write all the way to memory!)
– Target then sets ACK# to low.
–  Initiator sets REQ# to high & stops driving other lines.
– Target sets ACK# to high terminating the transaction

The push-button
(if ADS=0x04 write 0 or 1 depending on button)

ADS[7]
ADS[6]
ADS[5]
ADS[4]
ADS[3]
ADS[2]
ADS[1]
ADS[0]
REQ#

Button (0 or 1)

0

Data[7]

Data[0]

..

..

..

..

..

Delay ACK#

Button (0 or 1)

The push-button
(if ADS=0x04 write 0 or 1 depending on button)

ADS[7]
ADS[6]
ADS[5]
ADS[4]
ADS[3]
ADS[2]
ADS[1]
ADS[0]
REQ#

Button (0 or 1)

0

Data[7]

Data[0]

..

..

..

..

..

Delay ACK#

What about
CMD?

The LED
(1 bit reg written by LSB of address 0x05)

ADS[5]

ADS[7]
ADS[6]

ADS[4]
ADS[3]
ADS[2]
ADS[1]
ADS[0]
REQ#

Flip-flop
which controls
LED clock

D

DATA[5]

DATA[7]
DATA[6]

DATA[4]
DATA[3]
DATA[2]
DATA[1]
DATA[0]

Delay ACK#

Let’s write a simple assembly program
 Light on if button is pressed, off if not.

42 What if you wanted it to toggle each time the button was pressed?

