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Admin	

•  HW2	is	now	posted.	
•  HW1	answers	posted	as	well.	
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Today	
	
•  Memory-mapped	I/O	

•  Bus	Architectures	

•  ARM	AHB-Lite	

	



Memory-mapped I/O 

•  The idea is really simple 
–  Instead of real memory at a given memory address, 

have an I/O device respond. 
•  Huh? 

•  Example: 
–  Let’s say we want to have an LED turn on if we write a 

“1” to memory location 5. 
–  Further, let’s have a button we can read (pushed or 

unpushed) by reading address 4. 
•  If pushed, it returns a 1. 
•  If not pushed, it returns a 0. 
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Now… 

•  How do you get that to happen? 
–  We could just say “magic” but that’s not very helpful.  
–  Let’s start by detailing a simple bus and hooking 

hardware up to it. 

•  We’ll work on a real bus next time! 

5 



Basic example 

•  Discuss a basic bus protocol 
– Asynchronous (no clock) 
–  Initiator and Target 
– REQ#, ACK#, Data[7:0], ADS[7:0], CMD 

•  CMD=0 is read, CMD=1 is write. 
•  REQ# low means initiator is requesting something. 
•  ACK# low means target has done its job. 



A read transaction 

•  Say initiator wants to read location 0x24 
A.  Initiator sets ADS=0x24, CMD=0. 
B.  Initiator then sets REQ# to low. (why do we need a 

delay?  How much of a delay?) 
C.  Target sees read request. 
D.  Target drives data onto data bus. 
E.  Target then sets ACK# to low. 
F.  Initiator grabs the data from the data bus. 
G.  Initiator sets REQ# to high, stops driving ADS and CMD 
H.  Target stops driving data, sets ACK# to high terminating 

the transaction. 
I.  Bus is seen to be idle. 



Read transaction  

ADS[7:0] 
 
CMD 
 
Data[7:0] 
 
REQ# 
 
ACK# 

?? ?? 0x24 

?? ?? 0x55 

   A B C D    E                     F         G    HI        



A write transaction  
(write 0xF4 to location 0x31) 

–  Initiator sets ADS=0x31, CMD=1, Data=0xF4 
–  Initiator then sets REQ# to low.  
– Target sees write request. 
– Target reads data from data bus. (Just has to store in a 

register, need not write all the way to memory!) 
– Target then sets ACK# to low. 
–  Initiator sets REQ# to high & stops driving other lines. 
– Target sets ACK# to high terminating the transaction 



The push-button 
(if ADS=0x04 write 0 or 1 depending on button) 

ADS[7] 
ADS[6] 
ADS[5] 
ADS[4] 
ADS[3] 
ADS[2] 
ADS[1] 
ADS[0] 
REQ# 

Button (0 or 1) 

0 

Data[7] 

Data[0] 

.. 

.. 

.. 

.. 

.. 

Delay ACK# 

Button (0 or 1) 



The push-button 
(if ADS=0x04 write 0 or 1 depending on button) 

ADS[7] 
ADS[6] 
ADS[5] 
ADS[4] 
ADS[3] 
ADS[2] 
ADS[1] 
ADS[0] 
REQ# 

Button (0 or 1) 

0 

Data[7] 

Data[0] 

.. 

.. 

.. 

.. 

.. 

Delay ACK# 

What about 
CMD? 



The LED 
(1 bit reg written by LSB of address 0x05) 

ADS[5] 

ADS[7] 
ADS[6] 

ADS[4] 
ADS[3] 
ADS[2] 
ADS[1] 
ADS[0] 
REQ# 

Flip-flop 
which controls 
LED clock 

D 

DATA[5] 

DATA[7] 
DATA[6] 

DATA[4] 
DATA[3] 
DATA[2] 
DATA[1] 
DATA[0] 

Delay ACK# 



Let’s write a simple assembly program 
 Light on if button is pressed. 
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Outline 

 
•  Finish up example 

•  Bus Architectures 

•  ARM AHB-Lite 
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#include	<stdio.h>	
#include	<inttypes.h>	
	
#define	REG_FOO	0x40000140	
	
main	()	{	
		uint32_t	*reg	=	(uint32_t	*)(REG_FOO);	
		*reg	+=	3;	
	
		printf(“0x%x\n”,	*reg);	//	Prints	out	new	value	
}	

What happens when this “instruction” executes? 
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“*reg += 3” is turned into a ld, add, str sequence 

•  Load instruction 
–  A bus read operation commences 
–  The CPU drives the address “reg” onto the address bus 
–  The CPU indicated a read operation is in process (e.g. R/W#) 
–  Some “handshaking” occurs 
–  The target drives the contents of “reg” onto the data lines 
–  The contents of “reg” is loaded into a CPU register (e.g. r0) 

•  Add instruction 
–  An immediate add (e.g. add r0, #3) adds three to this value 

•  Store instruction 
–  A bus write operation commences 
–  The CPU drives the address “reg” onto the address bus 
–  The CPU indicated a write operation is in process (e.g. R/W#) 
–  Some “handshaking” occurs 
–  The CPU drives the contents of “r0” onto the data lines 
–  The target stores the data value into address “reg” 
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Details of the bus “handshaking” depend 
on the particular memory/peripherals involved  

•  SoC memory/peripherals 
–  AMBA AHB/APB 

•  NAND Flash 
–  Open NAND Flash Interface (ONFI) 

•  DDR SDRAM 
–  JEDEC JESD79, JESD79-2F, etc. 



Modern embedded systems have multiple busses 
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Atmel SAM3U 

Traditional 
373 focus 

Expanded 
373 focus 



Advanced Microcontroller Bus Architecture (AMBA) 
- Advanced High-performance Bus (AHB) 
- Advanced Peripheral Bus (APB) 

AHB 
•  High performance 
•  Pipelined operation 
•  Burst transfers 
•  Multiple bus masters 
•  Split transactions 

APB 
•  Low power 
•  Latched address/control 
•  Simple interface 
•  Suitable of many 

peripherals 
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Actel SmartFusion system/bus architecture 



Bus terminology 

•  Any given transaction have an “initiator” and 
“target” 
 

•  Any device capable of being an initiator is said to 
be a “bus master” 
–  In many cases there is only one bus master (single 

master vs. multi-master). 

•  A device that can only be a target is said to be a 
slave device. 

•  Some wires might be shared among all devices 
while others might be point-to-point connections 
(generally connecting the master to each 
target). 
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Driving shared wires 

•  It is commonly the case that some shared wires 
might have more than one potential device that 
needs to drive them. 
–  For example there might be a shared data bus that is 

used by the targets and the initiator.  We saw this in 
the simple bus. 

–  In that case, we need a way to allow one device to 
control the wires while the others “stay out of the 
way” 

•  Most common solutions are:  
–  using tri-state drivers (so only one device is 

driving the bus at a time) 
–  using open-collector connections (so if any 

device drives a 0 there is a 0 on the bus 
otherwise there is a 1) 
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Or just say no to shared wires. 

•  Another option is to not share wires that could 
be driven by more than one device... 
–  This can be really expensive.   

•  Each target device would need its own data bus. 
•  That’s a LOT of wires! 

–  Not doable when connecting chips on a PCB as you are 
paying for each pin. 

–  Quite doable (though not pretty) inside of a chip. 
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Wire count 

•  Say you have a single-master bus with 5 other 
devices connected and a 32-bit data bus. 
–  If we share the data bus using tri-state connections, 

each device has “only” 32-pins. 
–  If each device that could drive data has it’s own bus… 

•  Each slave would need _____ pins for data 
•  The master would need ______ pins for data 

•  Again, recall pins==$$$$$$.  
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Outline 

 
•  Finish up example 

•  Bus Architectures 

•  ARM APB 
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APB is a fairly simple bus designed to be easy to  
work with. 

•  Low-cost 

•  Low-power 

•  Low-complexity 

•  Low-bandwidth 

•  Non-pipelined 

•  Ideal for peripherals 



Let’s just look at APB writes (Master writing to device) 
as a starting point.    

•  We’ll add reads shortly. 
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Notation 

28 



APB bus signals 

•  PCLK  
–  Clock 

•  PADDR 
–  Address on bus 

•  PWRITE 
–  1=Write, 0=Read 

•  PWDATA 
–  Data written to the 

I/O device.  
Supplied by the 
bus master/
processor. 
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APB bus signals 

•  PSEL 
–  Asserted if the current 

bus transaction is 
targeted to this device 

•  PENABLE 
–  High during entire 

transaction other than 
the first cycle. 

•  PREADY 
–  Driven by target. 

Similar to our #ACK.  
Indicates if the target 
is ready to do 
transaction. 
Each target has it’s 
own PREADY   
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So what’s happening here? 



Example setup 

•  For the next couple of slides, we will 
assume we have one bus master “CPU” 
and two slave devices (D1 and D2) 
–  D1 is mapped to address 

0x00001000-0x0000100F  
–  D2 is mapped to 0x00001010-0x0000101F 



Say the CPU does a store to location 0x00001004 
with no stalls 
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D1 

D2 



Design a device which writes to a register whenever 
any address in its range is written 
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PWDATA[31:0]	

		

PWRITE		

		

PENABLE	

		

PSEL		

		

PADDR[7:0]	

		

PCLK	

		

PREADY	

		

32-bit	Reg	
	

D[31:0]																					
																		Q[31:0]	
EN	
		
				C																

		

We are assuming APB only gets lowest 8 bits of address here… 

What if we want to have the LSB of this register 
control an LED? 



Reg A should be written at address 0x00001000 
Reg B should be written at address 0x00001004 
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PWDATA[31:0]	

		

PWRITE		

		

PENABLE	

		

PSEL		

		

PADDR[7:0]	

		

PCLK	

		

PREADY	

		

32-bit	Reg	A	
	

D[31:0]																					
																		Q[31:0]	
EN	
		
				C																

		

We are assuming APB only gets lowest 8 bits of address here… 

32-bit	Reg	B	
	

D[31:0]																					
																		Q[31:0]	
EN	
		
				C																

		



Reads… 
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The key thing here is that each slave device has its own read data (PRDATA) bus! 

Recall that “R” is from the initiator’s viewpoint—the device drives data when read. 



Let’s say we want a device that provides data from 
a switch on a read to any address it is assigned.  
(so returns a 0 or 1) 
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PRDATA[31:0]	

		

PWRITE		

		

PENABLE	

		

PSEL		

		

PADDR[7:0]	

		

PCLK	

		

PREADY	

		

Mr. Switch 



Device provides data from switch A if address  
0x00001000 is read from. B if address 0x00001004 
is read from 
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PRDATA[31:0]	

		

PWRITE		

		

PENABLE	

		

PSEL		

		

PADDR[7:0]	

		

PCLK	

		

PREADY	

		

Switch A 

Switch B 



All reads read from register, all writes write… 
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PWDATA[31:0]	

		

PWRITE		

		

PENABLE	

		

PSEL		

		

PADDR[7:0]	

		

PCLK	

		

PREADY	

		

32-bit	Reg	
	

D[31:0]																					
																		Q[31:0]	
EN	
		
				C																

		

We are assuming APB only gets lowest 8 bits of address here… 



Things left out… 

•  There is another signal, PSLVERR (APB Slave 
Error) which we can drive high if things go bad. 
–  We’ll just tie that to 0. 

 

•  Notice we are assuming that our device need not 
stall. 
–  We could stall if we needed. 

•  I can’t find a limit on how long, but I suspect at 
some point the processor would generate an error. 
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Verilog! 
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/*** APB3 BUS INTERFACE ***/ 
input PCLK,    // clock 
input PRESERN,    // system reset 
input PSEL,    // peripheral select 
input PENABLE,    // distinguishes access phase 
output wire PREADY,   // peripheral ready signal 
output wire PSLVERR,  // error signal 
input PWRITE,   // distinguishes read and write cycles 
input [31:0] PADDR,  // I/O address 
input wire [31:0] PWDATA, // data from processor to I/O device (32 bits) 
output reg [31:0] PRDATA, // data to processor from I/O device (32-bits) 
 
/*** I/O PORTS DECLARATION ***/  
output reg LEDOUT,  // port to LED 
input SW    // port to switch 
);  
 
assign PSLVERR = 0; 
assign PREADY = 1; 
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APB state machine 

•  IDLE 
–  Default APB state 

•  SETUP 
–  When transfer required 
–  PSELx is asserted 
–  Only one cycle 

•  ACCESS 
–  PENABLE is asserted 
–  Addr, write, select, and 

write data remain stable 
–  Stay if PREADY = L 
–  Goto IDLE if PREADY = H 

and no more data 
–  Goto SETUP is PREADY = H 

and more data pending We’ll spend a bit more time  
on this next week… 
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Questions? 
 

Comments? 
 

Discussion? 


