
1	

EECS 373
Design of Microprocessor-Based Systems

Ron Dreslinski
University of Michigan

Lecture 5: Memory-mapped I/O review, APB, start interrupts.
Mostly APB though J

September 21st 2016

Reading	

•  Read	sec,ons	8.1	and	12.1	of	LeeSeshia	(see	
references	page)	
–  It’s	a	decent	overview	of	processor	types	&	scheduling	
– Don’t	worry	about	understanding	their	FIR	filter	
example	
•  Just	the	idea	why	I	might	want	specialized	digi,al	signal	
processors.	

•  The	whole	book	is	a	very	interes,ng	take	on	
embedded	processors	
–  Focused	on	modeling	and	simula,on	

Today	

•  Memory-mapped	I/O	and	bus	architecture	
review	

•  ARM’s	APB	bus	in	detail	
	
•  Start	on	interrupts	

Memory-mapped I/O

•  The idea is really simple
–  Instead of real memory at a given memory address,

have an I/O device respond.
•  Huh?

•  Example (this time word aligned)
–  Let’s say we want to have an LED turn on if we write a

“1” to memory location 8.
–  Further, let’s have a button we can read (pushed or

unpushed) by reading address 4.
•  If pushed, it returns a 1.
•  If not pushed, it returns a 0.

4

Write button pressed=LED on in C.

#define SW ((volatile uint32 *) 0x4)
#define LED ((volatile uint32 *) 0x8)

main(int argc, char * argv[])
{
 while(1)
 *LED=*SW;
}

5

1.  What is uint32?
2.  Why volatile? What does that do?
3.  Could I get rid of the dereference in the code? Should I?

Modern embedded systems have multiple busses

6

Atmel SAM3U

Historical
373 focus

Expanded
373 focus

Bus terminology

•  Any given transaction have an “initiator” and
“target”

•  Any device capable of being an initiator is said to
be a “bus master”
–  In many cases there is only one bus master (single

master vs. multi-master).

•  A device that can only be a target is said to be a
slave device.

•  Some wires might be shared among all devices
while others might be point-to-point connections
(generally connecting the master to each
target).

7

Today

•  Memory-mapped I/O and bus architecture
review

•  ARM’s APB bus in detail

•  Start on interrupts

9

APB is a fairly simple bus designed to be easy to
work with.

•  Low-cost

•  Low-power

•  Low-complexity

•  Low-bandwidth

•  Non-pipelined

•  Ideal for peripherals

Let’s just look at APB writes (Master writing to device)
as a starting point.

•  We’ll add reads shortly.

10

Notation

11

APB bus signals

•  PCLK
–  Clock

•  PADDR
–  Address on bus

•  PWRITE
–  1=Write, 0=Read

•  PWDATA
–  Data written to the

I/O device.
Supplied by the
bus master/
processor.

12

APB bus signals

•  PSEL
–  Asserted if the current

bus transaction is
targeted to this device

•  PENABLE
–  High during entire

transaction other than
the first cycle.

•  PREADY
–  Driven by target.

Similar to our #ACK.
Indicates if the target
is ready to do
transaction.
Each target has it’s
own PREADY

13

Single Master, Multiple Slave Devices

14

So what’s happening here?

Example setup

•  For the next couple of slides, we will
assume we have one bus master “CPU”
and two slave devices (D1 and D2)
–  D1 is mapped to address

0x00001000-0x0000100F
–  D2 is mapped to addresses

0x00001010-0x0000101F

Say the CPU does a store to location 0x00001004
with no stalls

17

D1

D2

Design a device which writes to a register whenever
any address in its range is written

18

PWDATA[31:0]	

		

PWRITE		

		

PENABLE	

		

PSEL		

		

PADDR[7:0]	

		

PCLK	

		

PREADY	

		

32-bit	Reg	
	

D[31:0]																					
																		Q[31:0]	
EN	
		
				C																

		

We are assuming APB only gets lowest 8 bits of address here…

What if we want to have the LSB of this register
control an LED?

Reg A should be written at address 0x00001000
Reg B should be written at address 0x00001004

19

PWDATA[31:0]	

		

PWRITE		

		

PENABLE	

		

PSEL		

		

PADDR[7:0]	

		

PCLK	

		

PREADY	

		

32-bit	Reg	A	
	

D[31:0]																					
																		Q[31:0]	
EN	
		
				C																

		

We are assuming APB only gets lowest 8 bits of address here…

32-bit	Reg	B	
	

D[31:0]																					
																		Q[31:0]	
EN	
		
				C																

		

Reads…

20

The key thing here is that each slave device has its own read data (PRDATA) bus!

Let’s say we want a device that provides data from
a switch on a read to any address it is assigned.
(so returns a 0 or 1)

21

PRDATA[31:0]	

		

PWRITE		

		

PENABLE	

		

PSEL		

		

PADDR[7:0]	

		

PCLK	

		

PREADY	

		

Mr. Switch

Device provides data from switch A if address
0x00001000 is read from. B if address 0x00001004
is read from

22

PRDATA[31:0]	

		

PWRITE		

		

PENABLE	

		

PSEL		

		

PADDR[7:0]	

		

PCLK	

		

PREADY	

		

Switch A

Switch B

All reads read from register, all writes write…

23

PWDATA[31:0]	

		

PWRITE		

		

PENABLE	

		

PSEL		

		

PADDR[7:0]	

		

PCLK	

		

PREADY	

		

32-bit	Reg	
	

D[31:0]																					
																		Q[31:0]	
EN	
		
				C																

		

We are assuming APB only gets lowest 8 bits of address here…

24

A write transfer with wait states

Setup phase begins
with this rising edge

Setup
Phase

Access
Phase

Wait
State

Wait
State

25

A read transfer with wait states

Setup phase begins
with this rising edge

Setup
Phase

Access
Phase

Wait
State

Wait
State

Things left out…

•  There is another signal, PSLVERR (APB Slave
Error) which we can drive high if things go bad.
–  We’ll just tie that to 0.

•  Notice we are assuming that our device need not
stall.
–  We could stall if we needed.

•  I can’t find a limit on how long, but I suspect at
some point the processor would generate an error.

26

Verilog!

27

/*** APB3 BUS INTERFACE ***/
input PCLK, // clock
input PRESERN, // system reset
input PSEL, // peripheral select
input PENABLE, // distinguishes access phase
output wire PREADY, // peripheral ready signal
output wire PSLVERR, // error signal
input PWRITE, // distinguishes read and write cycles
input [31:0] PADDR, // I/O address
input wire [31:0] PWDATA, // data from processor to I/O device (32 bits)
output reg [31:0] PRDATA, // data to processor from I/O device (32-bits)

/*** I/O PORTS DECLARATION ***/
output reg LEDOUT, // port to LED
input SW // port to switch
);

assign PSLVERR = 0;
assign PREADY = 1;

28

APB state machine

•  IDLE
–  Default APB state

•  SETUP
–  When transfer required
–  PSELx is asserted
–  Only one cycle

•  ACCESS
–  PENABLE is asserted
–  Addr, write, select, and

write data remain stable
–  Stay if PREADY = L
–  Goto IDLE if PREADY = H

and no more data
–  Goto SETUP is PREADY = H

and more data pending We’ll spend a bit more time
on this next week…

Today

•  Memory-mapped I/O and bus architecture
review

•  ARM’s APB bus in detail

•  Start on interrupts

Interrupts

Merriam-Webster:
–  “to break the uniformity or continuity of”

•  Informs a program of some external events
•  Breaks execution flow

Key questions:
•  Where do interrupts come from?
•  How do we save state for later continuation?
•  How can we ignore interrupts?
•  How can we prioritize interrupts?
•  How can we share interrupts?

30

I/O Data Transfer

Two key questions to determine how data is
transferred to/from a non-trivial I/O device:

1.  How does the CPU know when data is available?
a.  Polling
b.  Interrupts

2.  How is data transferred into and out of the

device?
a.  Programmed I/O
b.  Direct Memory Access (DMA)

Interrupts

Interrupt (a.k.a. exception or trap):
•  An event that causes the CPU to stop executing the

current program and begin executing a special piece of
code called an interrupt handler or interrupt service
routine (ISR). Typically, the ISR does some work and
then resumes the interrupted program.

Interrupts are really glorified procedure calls, except that

they:
•  can occur between any two instructions
•  are transparent to the running program (usually)
•  are not explicitly requested by the program

(typically)
•  call a procedure at an address determined by the

type of interrupt, not the program

Two basic types of interrupts
(1/2)

•  Those caused by an instruction
–  Examples:

• TLB miss
•  Illegal/unimplemented instruction
• div by 0

–  Names:
• Trap, exception

Two basic types of interrupts
(2/2)

•  Those caused by the external world
–  External device
–  Reset button
–  Timer expires
–  Power failure
–  System error

•  Names:
–  interrupt, external interrupt

How it works

•  Something tells the processor core there is an
interrupt

•  Core transfers control to code that needs to be
executed

•  Said code “returns” to old program
•  Much harder then it looks.

–  Why?

… is in the details

•  How do you figure out where to branch to?

•  How do you ensure that you can get back to
where you started?

•  Don’t we have a pipeline? What about partially
executed instructions?

•  What if we get an interrupt while we are
processing our interrupt?

•  What if we are in a “critical section?”

Where

•  If you know what caused the interrupt
then you want to jump to the code that
handles that interrupt.
–  If you number the possible interrupt cases,

and an interrupt comes in, you can just
branch to a location, using that number as an
offset (this is a branch table)

–  If you don’t have the number, you need to
poll all possible sources of the interrupt to
see who caused it.

•  Then you branch to the right code

Get back to where you once belonged

•  Need to store the return address somewhere.
–  Stack might be a scary place.

•  That would involve a load/store and might cause an
interrupt (page fault)!

–  So a dedicated register seems like a good choice
•  But that might cause problems later…

Snazzy architectures

•  A modern processor has many (often 50+)
instructions in-flight at once.
–  What do we do with them?

•  Drain the pipeline?
–  What if one of them causes an exception?

•  Punt all that work
–  Slows us down

•  What if the instruction that caused the
exception was executed before some
other instruction?
–  What if that other instruction caused an

interrupt?

Nested interrupts

•  If we get one interrupt while handling
another what to do?
–  Just handle it

•  But what about that dedicated register?
•  What if I’m doing something that can’t be stopped?

–  Ignore it
•  But what if it is important?

–  Prioritize
•  Take those interrupts you care about. Ignore the

rest
•  Still have dedicated register problems.

Critical section

•  We probably need to ignore some interrupts but
take others.
–  Probably should be sure our code can’t cause an

exception.
–  Use same prioritization as before.

Our processor

•  Over 100 interrupt sources
–  Power on reset, bus errors, I/O pins changing state,

data in on a serial bus etc.

•  Need a great deal of control
–  Ability to enable and disable interrupt sources
–  Ability to control where to branch to for each interrupt
–  Ability to set interrupt priorities

•  Who wins in case of a tie
•  Can interrupt A interrupt the ISR for interrupt B?

–  If so, A can “preempt” B.

•  All that control will involve memory mapped I/O.
–  And given the number of interrupts that’s going to be a

pain in the rear.

42

43

Enabling and disabling interrupt sources

How to know where to go on an interrupt.

44

