
EECS 373
Design of Microprocessor-Based Systems

Ron Dreslinski
University of Michigan

Lecture 6 & 7: Interrupts (end of slides on Wednesday)
September	26th	&	28th		
 Exceptions, Traps, Faults & ARM’s Nested Vectored Interrupt Controller

Slides	developed	in	part	by	Prabal	Du:a	and	Mark	Brehob	

Administra?ve	

•  HW2	Due	Today	
•  Prof.	Dreslinski	Office	hours	changed	this	
week,	they	will	be:	
– Tuesday	2:30-3:30pm	
– Wednesday	3-4pm	

•  Fire	Alarm	Tes?ng	on	Wednesday	@1:30	
– WE	WILL	HAVE	CLASS		

This Week: Interrupts, exceptions, traps, faults, & NVIC

3

Timers

CPU

Software

Hardware

Internal

External

System Buses
AHB/APB

ldr (read)
str (write)ISA

EECS 370

USART

DAC/ADC

Internal &
External
Memory

GPIO/INT

C
Assembly

Machine Code

Interrupts

interrupts

SVC#

fault

traps &
exceptions

INT#

4

Dealing with asynchronous events

•  Many sources of “events” during program execution
–  Application makes a system call
–  Software executes instruction illegally (e.g. divides by zero)
–  Peripheral needs attention or has completed a requested action

•  How do we know that an event has occurred?
•  Broadly, two options to “detect” events

–  Polling
•  We can repeatedly poll the app/processor/peripherals

•  When an event occurs, detect this via a poll and take action
–  Interrupts

•  Let the app/processors/peripheral notify us instead
•  Take action when such a notification occurs (or shortly later)

5

Polling-Driven Application

•  Recall pushbutton-LED example

 mov r0, #0x4 % PBS MMIO address
 mov r1, #0x5 % LED MMIO address

loop: ldr r2, [r0, #0] % Read value from switch [1 cycle]
 str r2 [r1, #0] % Save value to LED [1 cycle]
 b loop % Repeat these steps [1 cycle]

•  This is a polling-driven application
•  Software constantly loops, polling and (re)acting
•  However, it doesn’t do anything else useful!

6

The Problem with Polling

•  If we want to do other work, we might call a routine:

 mov r0, #0x4 % PBS MMIO address
 mov r1, #0x5 % LED MMIO address

loop: ldr r2, [r0, #0] % Read value from switch [1 cycle]
 str r2 [r1, #0] % Save value to LED [1 cycle]
 bl do_some_work % Do some other work [100 cycles]
 b loop % Repeat these steps [1 cycle]

•  Polling affects the responsiveness of PBS ó LED path!
– Whenever we’re “doing some work,” we not polling PBS
– And the more “other work” we do, the worse the latency gets

•  And it affects the efficiency of the processor
– The ldr/str values don’t change very either much
– So, the processor is mostly wasting CPU cycles (and energy)

7

Polling trades off efficiency and responsiveness

 mov r0, #0x4 % PBS MMIO address
 mov r1, #0x5 % LED MMIO address

loop: ldr r2, [r0, #0] % Read value from switch [1 cycle]
 str r2 [r1, #0] % Save value to LED [1 cycle]
 bl do_some_work % Do some other work [100 cycles]
 b loop % Repeat these steps [1 cycle]

Effi
ci
en

cy
	

Responsiveness	

•  Efficiency
–  Minimizing useless work
–  Maximizing useful work
–  Saving cycles & energy

•  Responsiveness
–  Minimizing latency
–  Tight event-action coupling

•  Can we do better? Yes!

Interrupts

Merriam-Webster:
–  “to break the uniformity or continuity of”

•  Informs a program of some external events
•  Breaks execution flow

Key questions:
•  Where do interrupts come from?
•  How do we save state for later continuation?
•  How can we ignore interrupts?
•  How can we prioritize interrupts?
•  How can we share interrupts?

8

Interrupts

Interrupt (a.k.a. exception or trap):
•  An event that causes the CPU to stop executing current program
•  Begin executing a special piece of code

•  Called an interrupt handler or interrupt service routine (ISR)
•  Typically, the ISR does some work
•  Then resumes the interrupted program

Interrupts are really glorified procedure calls, except that they:

•  Can occur between any two instructions
•  Are “transparent” to the running program (usually)
•  Are not explicitly requested by the program (typically)
•  Call a procedure at an address determined by the type of

interrupt, not the program

Two basic types of interrupts
(1/2)

•  Those caused by an instruction
–  Examples:

• TLB miss
•  Illegal/unimplemented instruction
• div by 0
• SVC (supervisor call, e.g.: SVC #3)

–  Names:
• Trap, exception

Two basic types of interrupts
(2/2)

•  Those caused by the external world
–  External device
–  Reset button
–  Timer expires
–  Power failure
–  System error

•  Names:
–  interrupt, external interrupt

External interrupt types

•  Two main types
–  Level-triggered
–  Edge-triggered

12

Level-triggered interrupts

•  Basics:
–  Signaled by asserting a line low or high
–  Interrupting device drives line low or high and holds it there until

it is serviced
–  Device deasserts when directed to or after serviced

•  Requires some way to tell it to stop.

•  Sharing?
–  Can share the line among multiple devices
–  Often open-collector or HiZ

•  Active devices assert the line, inactive devices let the line float
–  Easy to share line w/o losing interrupts
–  But servicing increases CPU load
–  And requires CPU to keep cycling through to check
–  Different ISR costs suggests careful ordering of ISR checks
–  Can’t detect a new interrupt when one is already asserted

13

Edge-triggered interrupts

•  Basics:
–  Signaled by a level *transition* (e.g. rising/falling edge)
–  Interrupting device drives a pulse onto INT line

•  Sharing *is* possible
–  INT line has a pull up and all devices are OC/OD.
–  Could we miss an interrupt? Maybe...if close in time
–  What happens if interrupts merge? Need one more ISR pass
–  Easy to detect "new interrupts”
–  Pitfalls: spurious edges, missed edges

•  Source of "lockups" in early computers

14

Exercise: Another case where polling is slow—sharing!

•  Assume you have
–  n possible interrupt sources
–  That all share a single interrupt line and/or handler
–  That all fire at about the same rate on average
–  And that require about the same amount of time to poll

•  The handler might look something like this

 isr_handler: bl chk_interrupt_src_1 % 100 cycles
 bl chk_interrupt_src_2 % 100 cycles
 …
 bl chk_interrupt_src_n % 100 cycles
 bx lr

•  How does average interrupt processing time grow with n?

•  How would you order chk_interrupt_src if the interrupts
fired at different rates or had different polling times?

Two key questions to determine how data is transferred to/
from a non-trivial I/O device:

1.  How does the CPU know when data are available?
a.  Polling
b.  Interrupts

2.  How are data transferred into and out of the device?

a.  Programmed I/O
b.  Direct Memory Access (DMA)

Why are interrupts useful? Example: I/O Data Transfer

How it works

•  Something tells the processor core there is an interrupt

•  Core transfers control to code that needs to be executed

•  Said code “returns” to old program

•  Much harder then it looks.
–  Why?

Devil is in the details

•  How do you figure out where to branch to?

•  How to you ensure that you can get back to where you
started?

•  Don’t we have a pipeline? What about partially executed
instructions (and OoO instructions)?

•  What if we get an interrupt while we are processing an
interrupt?

•  What if we are in a “critical section?”

Where

•  If you know what caused the interrupt
then you want to jump to the code that
handles that interrupt.
–  If you number the possible interrupt cases,

and an interrupt comes in, you can just
branch to a location, using that number as an
offset (this is a branch table)

–  If you don’t have the number, you need to
poll all possible sources of the interrupt to
see who caused it.

•  Then you branch to the right code

Get back to where you once belonged

•  Need to store the return address somewhere.
–  Stack might be a scary place.

•  That would involve a load/store and might cause an
interrupt (page fault)!

–  So a dedicated register seems like a good choice
•  But that might cause problems later…
•  What happens if another interrupt happens?

–  Could that overwrite the register?

Modern architectures

•  A modern processor has many (often 50+)
instructions in-flight at once.
–  What do we do with them?

•  Drain the pipeline?
–  What if one of them causes an exception?

•  Punt all that work
–  Slows us down

•  What if the instruction that caused the exception
was executed before some other instruction?
–  What if that other instruction caused an interrupt?

Nested interrupts

•  If we get one interrupt while handling
another, what to do?
–  Just handle it

•  But what about that dedicated register?
•  What if I’m doing something that can’t be stopped?

–  Ignore it
•  But what if it is important?

–  Prioritize
•  Take those interrupts you care about. Ignore the

rest
•  Still have dedicated register problems.

Critical section

•  We probably need to ignore some interrupts but
take others.
–  Probably should be sure our code can’t cause an

exception.
–  Use same prioritization as before.

•  What about instructions that shouldn’t be
interrupted?
–  Disable interrupts while processing an interrupt?

High-level review of interrupts

•  Why do we need them? Why are the alternatives
unacceptable?
–  Convince me!

•  What sources of interrupts are there?
–  Hardware and software!

•  What makes them difficult to deal with?
–  Interrupt controllers are complex: there is a lot to do!

•  Enable/disable, prioritize, allow premption (nested
interrupts), etc.

–  Software issues are non-trivial
•  Can’t trash work of task you interrupted
•  Need to be able to restore state
•  Shared data issues are a real pain

24

Our processor—ARM Cortex-M3

•  Over 100 interrupt sources
–  Power on reset, bus errors, I/O pins changing state, data in

on a serial bus etc.

•  Need a great deal of control
–  Ability to enable and disable interrupt sources
–  Ability to control where to branch to for each interrupt
–  Ability to set interrupt priorities

•  Who wins in case of a tie
•  Can interrupt A interrupt the ISR for interrupt B?

–  If so, A can “preempt” B.

•  All that control will involve memory mapped I/O.
–  And given the number of interrupts that’s going to be a pain

25

26

Basic interrupt processing

•  Stacking
–  Automatically by CPU
–  Maintains ABI semantics
–  ISRs can be C functions

•  Vector Fetch
–  We’ll see this next

•  Exit: update of SP, LR, PC

SP	

xPSR	

PC	

LR	

R12	

R3	

R2	

R1	

R0	

Previous	
stacked	
data	

Free	
stack	
space	

ñ	
Higher	Addresses	

Lower	Addresses	

ñ	

The	stack	(PSP	or	MSP)	

SmartFusion interrupt sources

27

28

And the interrupt vectors
 (in startup_a2fxxxm3.s found in CMSIS, startup_gcc)

g_pfnVectors:
 .word _estack
 .word Reset_Handler
 .word NMI_Handler
 .word HardFault_Handler
 .word MemManage_Handler
 .word BusFault_Handler
 .word UsageFault_Handler
 .word 0
 .word 0
 .word 0
 .word 0
 .word SVC_Handler
 .word DebugMon_Handler
 .word 0
 .word PendSV_Handler
 .word SysTick_Handler
 .word WdogWakeup_IRQHandler
 .word BrownOut_1_5V_IRQHandler
 .word BrownOut_3_3V_IRQHandler
.............. (they continue)

29

How to change where to go on an interrupt?
Answer: edit the interrupt vector table [IVT]

30

31

NVIC/Interrupt configuration registers

•  ICTR Interrupt Controller Type Register (RW)
•  ISER Interrupt Set-Enable Register (RW)
•  ICER Interrupt Clear-Enable Register (RW)
•  ISPR Interrupt Set-Pending Register (RW)
•  ICPR Interrupt Clear-Pending Register (RW)
•  IABR Interrupt Active Bit Register (RO)
•  IPR Interrupt Priority Register (RW)
•  AIRC Application Interrupt and Reset Control

Enabling and disabling interrupt sources

32

33

34

Exercise: Enabling interrupt sources

35

•  Implement the following function to enable external
interrupt #x when called:

void enable_interrupt(int x) {
 /* your code here */
}

•  Umm, so what do we have to do?
–  Use top (32-5)=27 bits of x to select the word offset
–  Offset from what, you ask? Base of ISER (0xE000E100)
–  Use the bottom five bits of x to select bit position
–  Write a ‘1’ to that bit position at memory addr=base+offset
–  You’re done!

Pending interrupts

36

The normal case. Once Interrupt request is seen, processor puts it in
“pending” state even if hardware drops the request.
IPS is cleared by the hardware once we jump to the ISR.

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4

37

In this case, the processor never took the interrupt because we cleared the
IPS by hand (via a memory-mapped I/O register)

38

39

Answer

40

Interrupt pulses before entering ISR

41

Answer

42

43

Interrupt Priority

•  What do we do if several interrupts arrive simultaneously?
•  NVIC allows priorities for (almost) every interrupt
•  3 fixed highest priorities, up to 256 programmable priorities

–  128 preemption levels
–  Not all priorities have to be implemented by a vendor

–  SmartFusion has 32 priority levels, i.e. 0x00, 0x08, … , 0xF8

•  Higher priority interrupts can pre-empt lower priorities
•  Priority can be sub-divided into priority groups

–  Splits priority register into two halves, preempt priority & subpriority
–  Preempt priority: indicates if an interrupt can preempt another
–  Subpriority: used to determine which is served first if two interrupts of

same group arrive concurrently
44

Interrupt Priority (2)

•  Interrupt priority level registers
–  Range: 0xE000E400 to 0xE000E4EF

45

Preemption Priority and Subpriority

46

PRIMASK, FAULTMASK, and BASEPRI registers

•  What if we quickly want to disable all interrupts?
•  Write 1 into PRIMASK to disable all interrupts except NMI

–  MOV R0, #1
–  MSR PRIMASK, R0 ; MSR and MRS are special instructions

•  Write 0 into PRIMASK to enable all interrupts

•  FAULTMASK is the same as PRIMASK, but it also blocks
hard faults (priority = -1)

•  What if we want to disable all interrupts below a certain
priority?

•  Write priority into BASEPRI register
–  MOV R0, #0x60
–  MSR BASEPRI, R0

47

Masking

48

Interrupt Service Routines

•  Automatic saving of registers upon exception
–  PC, PSR, R0-R3, R12, LR
–  This occurs over data bus

•  While data bus busy, fetch exception vector
–  i.e. target address of exception handler
–  This occurs over instruction bus

•  Update SP to new location
•  Update IPSR (low part of xPSR) with exception new #
•  Set PC to vector handler
•  Update LR to special value EXC_RETURN
•  Several other NVIC registers gets updated
•  Latency can be as short as 12 cycles (w/o mem delays)

49

The xPSR register layout

50

ARM interrupt summary

1.  We’ve got a bunch of memory-mapped registers
that control things (NVIC)
–  Enable/disable individual interrupts
–  Set/clear pending
–  Interrupt priority and preemption

2.  We’ve got to understand how the hardware
interrupt lines interact with the NVIC

3.  And how we figure out where to set the PC to
point to for a given interrupt source.

51

1. NVIC registers (example)

52

1. More registers (example)

53

1. Yet another part of the NVIC registers!

54

2. How external lines interact with the NVIC

55

The normal case. Once Interrupt request is seen, processor puts it in
“pending” state even if hardware drops the request.
IPS is cleared by the hardware once we jump to the ISR.

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4

3. How the hardware figures out what to set the PC to

g_pfnVectors:
 .word _estack
 .word Reset_Handler
 .word NMI_Handler
 .word HardFault_Handler
 .word MemManage_Handler
 .word BusFault_Handler
 .word UsageFault_Handler
 .word 0
 .word 0
 .word 0
 .word 0
 .word SVC_Handler
 .word DebugMon_Handler
 .word 0
 .word PendSV_Handler
 .word SysTick_Handler
 .word WdogWakeup_IRQHandler
 .word BrownOut_1_5V_IRQHandler
 .word BrownOut_3_3V_IRQHandler
.............. (they continue)

56

Discussion: So let’s say a GPIO pin goes high
 - When will we get an interrupt?
 - What happens if the interrupt is allowed to proceed?

57

What happens when we return from an ISR?

58

•  Interrupt exiting process
–  System restoration needed (different from branch)
–  Special LR value could be stored (0xFFFFFFFx)

•  Tail chaining
–  When new exception occurs
–  But CPU handling another exception of same/higher priority
–  New exception will enter pending state
–  But will be executed before register unstacking
–  Saving unnecessary unstacking/stacking operations
–  Can reenter hander in as little as 6 cycles

•  Late arrivals (ok, so this is actually on entry)
–  When one exception occurs and stacking commences
–  Then another exception occurs before stacking completes
–  And second exception of higher preempt priority arrives
–  The later exception will be processed first

Example of Complexity: The Reset Interrupt

1) No	power	
2)  System	is	held	in	RESET	as	long	as	VCC15	<	0.8V	

a)  In	reset:	registers	forced	to	default	
b) RC-Osc	begins	to	oscillate	
c)  MSS_CCC	drives	RC-Osc/4	into	FCLK	
d)  PORESET_N	is	held	low	

3) Once	VCC15GOOD,	PORESET_N	goes	high	
a) MSS	reads	from	eNVM	address	0x0	and	0x4

59

