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Administra?ve	

•  HW2	Due	Today	
•  Prof.	Dreslinski	Office	hours	changed	this	
week,	they	will	be:	
– Tuesday	2:30-3:30pm	
– Wednesday	3-4pm	

•  Fire	Alarm	Tes?ng	on	Wednesday	@1:30	
– WE	WILL	HAVE	CLASS		



This Week: Interrupts, exceptions, traps, faults, & NVIC 
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Dealing with asynchronous events 

•  Many sources of “events” during program execution 
–  Application makes a system call 
–  Software executes instruction illegally (e.g. divides by zero) 
–  Peripheral needs attention or has completed a requested action 

•  How do we know that an event has occurred? 
•  Broadly, two options to “detect” events 

–  Polling 
•  We can repeatedly poll the app/processor/peripherals 

•  When an event occurs, detect this via a poll and take action 
–  Interrupts 

•  Let the app/processors/peripheral notify us instead 
•  Take action when such a notification occurs (or shortly later) 

 



5 

Polling-Driven Application 

•  Recall pushbutton-LED example 
 

  mov  r0, #0x4   % PBS MMIO address 
  mov  r1, #0x5   % LED MMIO address 

loop:  ldr  r2, [r0, #0]  % Read value from switch [1 cycle] 
  str  r2 [r1, #0]  % Save value to LED [1 cycle] 
  b  loop   % Repeat these steps [1 cycle] 

•  This is a polling-driven application 
•  Software constantly loops, polling and (re)acting 
•  However, it doesn’t do anything else useful! 
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The Problem with Polling 

•  If we want to do other work, we might call a routine: 
 

  mov  r0, #0x4   % PBS MMIO address 
  mov  r1, #0x5   % LED MMIO address 

loop:  ldr  r2, [r0, #0]  % Read value from switch [1 cycle] 
  str  r2 [r1, #0]  % Save value to LED [1 cycle] 
  bl  do_some_work  % Do some other work [100 cycles] 
  b  loop   % Repeat these steps [1 cycle] 

•  Polling affects the responsiveness of PBS ó LED path! 
– Whenever we’re “doing some work,” we not polling PBS 
– And the more “other work” we do, the worse the latency gets 

•  And it affects the efficiency of the processor 
– The ldr/str values don’t change very either much 
– So, the processor is mostly wasting CPU cycles (and energy) 
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Polling trades off efficiency and responsiveness 

 mov  r0, #0x4   % PBS MMIO address 
 mov  r1, #0x5   % LED MMIO address 

loop:  ldr  r2, [r0, #0]   % Read value from switch [1 cycle] 
 str  r2 [r1, #0]   % Save value to LED [1 cycle] 
 bl  do_some_work  % Do some other work [100 cycles] 
 b  loop   % Repeat these steps [1 cycle] 

Effi
ci
en

cy
	

Responsiveness	

•  Efficiency 
–  Minimizing useless work 
–  Maximizing useful work 
–  Saving cycles & energy 

•  Responsiveness 
–  Minimizing latency 
–  Tight event-action coupling 

•  Can we do better?  Yes! 



Interrupts 

Merriam-Webster:  
–  “to break the uniformity or continuity of” 

•  Informs a program of some external events 
•  Breaks execution flow 
 
Key questions: 
•  Where do interrupts come from? 
•  How do we save state for later continuation? 
•  How can we ignore interrupts? 
•  How can we prioritize interrupts? 
•  How can we share interrupts? 
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Interrupts 

Interrupt (a.k.a. exception or trap):   
•  An event that causes the CPU to stop executing current program 
•  Begin executing a special piece of code 

•  Called an interrupt handler or interrupt service routine (ISR) 
•  Typically, the ISR does some work 
•  Then resumes the interrupted program 

 
Interrupts are really glorified procedure calls, except that they: 

•  Can occur between any two instructions 
•  Are “transparent” to the running program (usually) 
•  Are not explicitly requested by the program (typically) 
•  Call a procedure at an address determined by the type of 

interrupt, not the program 



Two basic types of interrupts 
(1/2) 

•  Those caused by an instruction 
–  Examples: 

• TLB miss 
•  Illegal/unimplemented instruction 
• div by 0 
• SVC (supervisor call, e.g.: SVC #3) 

–  Names: 
• Trap, exception 



Two basic types of interrupts 
(2/2) 

•  Those caused by the external world 
–  External device 
–  Reset button 
–  Timer expires 
–  Power failure 
–  System error 

•  Names: 
–  interrupt, external interrupt 



External interrupt types 

•  Two main types 
–  Level-triggered 
–  Edge-triggered 
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Level-triggered interrupts 

•  Basics: 
–  Signaled by asserting a line low or high 
–  Interrupting device drives line low or high and holds it there until 

it is serviced 
–  Device deasserts when directed to or after serviced 

•  Requires some way to tell it to stop. 
 

•  Sharing? 
–  Can share the line among multiple devices  
–  Often open-collector or HiZ 

•  Active devices assert the line, inactive devices let the line float 
–  Easy to share line w/o losing interrupts 
–  But servicing increases CPU load  
–  And requires CPU to keep cycling through to check 
–  Different ISR costs suggests careful ordering of ISR checks  
–  Can’t detect a new interrupt when one is already asserted 
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Edge-triggered interrupts 

•  Basics: 
–  Signaled by a level *transition* (e.g. rising/falling edge) 
–  Interrupting device drives a pulse onto INT line 

 

•  Sharing *is* possible 
–  INT line has a pull up and all devices are OC/OD. 
–  Could we miss an interrupt?  Maybe...if close in time 
–  What happens if interrupts merge?  Need one more ISR pass 
–  Easy to detect "new interrupts” 
–  Pitfalls: spurious edges, missed edges 

 

•  Source of "lockups" in early computers 
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Exercise: Another case where polling is slow—sharing! 

•  Assume you have 
–  n possible interrupt sources 
–  That all share a single interrupt line and/or handler 
–  That all fire at about the same rate on average 
–  And that require about the same amount of time to poll 

•  The handler might look something like this 
 

 isr_handler:  bl  chk_interrupt_src_1  % 100 cycles 
   bl  chk_interrupt_src_2  % 100 cycles 
   … 
   bl  chk_interrupt_src_n  % 100 cycles 
   bx  lr 

•  How does average interrupt processing time grow with n? 

•  How would you order chk_interrupt_src if the interrupts 
fired at different rates or had different polling times? 



Two key questions to determine how data is transferred to/
from a non-trivial I/O device: 

1.  How does the CPU know when data are available? 
a.  Polling 
b.  Interrupts 

 
2.  How are data transferred into and out of the device? 

a.  Programmed I/O 
b.  Direct Memory Access (DMA) 

Why are interrupts useful?  Example: I/O Data Transfer 



How it works 

•  Something tells the processor core there is an interrupt 

•  Core transfers control to code that needs to be executed 

•  Said code “returns” to old program 

•  Much harder then it looks. 
–  Why? 



Devil is in the details 

•  How do you figure out where to branch to? 

•  How to you ensure that you can get back to where you 
started? 

•  Don’t we have a pipeline?  What about partially executed 
instructions (and OoO instructions)? 

•  What if we get an interrupt while we are processing an 
interrupt? 

•  What if we are in a “critical section?” 



Where 

•  If you know what caused the interrupt 
then you want to jump to the code that 
handles that interrupt. 
–  If you number the possible interrupt cases, 

and an interrupt comes in, you can just 
branch to a location, using that number as an 
offset (this is a branch table) 

–  If you don’t have the number, you need to 
poll all possible sources of the interrupt to 
see who caused it. 

•  Then you branch to the right code 



Get back to where you once belonged 

•  Need to store the return address somewhere. 
–  Stack might be a scary place.   

•  That would involve a load/store and might cause an 
interrupt (page fault)! 

–  So a dedicated register seems like a good choice 
•  But that might cause problems later… 
•  What happens if another interrupt happens? 

–  Could that overwrite the register? 



Modern architectures  

•  A modern processor has many (often 50+) 
instructions in-flight at once. 
–  What do we do with them? 

•  Drain the pipeline? 
–  What if one of them causes an exception? 

•  Punt all that work 
–  Slows us down 

•  What if the instruction that caused the exception 
was executed before some other instruction? 
–  What if that other instruction caused an interrupt? 



Nested interrupts 

•  If we get one interrupt while handling 
another, what to do? 
–  Just handle it 

•  But what about that dedicated register? 
•  What if I’m doing something that can’t be stopped? 

–  Ignore it 
•  But what if it is important? 

–  Prioritize 
•  Take those interrupts you care about.  Ignore the 

rest 
•  Still have dedicated register problems. 



Critical section 

•  We probably need to ignore some interrupts but 
take others. 
–  Probably should be sure our code can’t cause an 

exception. 
–  Use same prioritization as before. 

•  What about instructions that shouldn’t be 
interrupted? 
–  Disable interrupts while processing an interrupt? 



High-level review of interrupts 

•  Why do we need them?  Why are the alternatives 
unacceptable?   
–  Convince me! 

•  What sources of interrupts are there? 
–  Hardware and software! 

•  What makes them difficult to deal with? 
–  Interrupt controllers are complex: there is a lot to do! 

•  Enable/disable, prioritize, allow premption (nested 
interrupts), etc. 

–  Software issues are non-trivial 
•  Can’t trash work of task you interrupted 
•  Need to be able to restore state 
•  Shared data issues are a real pain 
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Our processor—ARM Cortex-M3 

•  Over 100 interrupt sources 
–  Power on reset, bus errors, I/O pins changing state, data in 

on a serial bus etc. 

•  Need a great deal of control 
–  Ability to enable and disable interrupt sources 
–  Ability to control where to branch to for each interrupt 
–  Ability to set interrupt priorities 

•  Who wins in case of a tie 
•  Can interrupt A interrupt the ISR for interrupt B? 

–  If so, A can “preempt” B. 

•  All that control will involve memory mapped I/O. 
–  And given the number of interrupts that’s going to be a pain 
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Basic interrupt processing 

•  Stacking 
–  Automatically by CPU 
–  Maintains ABI semantics 
–  ISRs can be C functions 

•  Vector Fetch 
–  We’ll see this next 

•  Exit: update of SP, LR, PC 
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The	stack	(PSP	or	MSP)	



SmartFusion interrupt sources 
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And the interrupt vectors 
 (in startup_a2fxxxm3.s found in CMSIS, startup_gcc) 

g_pfnVectors: 
    .word  _estack 
    .word  Reset_Handler 
    .word  NMI_Handler 
    .word  HardFault_Handler 
    .word  MemManage_Handler 
    .word  BusFault_Handler 
    .word  UsageFault_Handler 
    .word  0 
    .word  0 
    .word  0 
    .word  0 
    .word  SVC_Handler 
    .word  DebugMon_Handler 
    .word  0 
    .word  PendSV_Handler 
    .word  SysTick_Handler 
    .word  WdogWakeup_IRQHandler 
    .word  BrownOut_1_5V_IRQHandler 
    .word  BrownOut_3_3V_IRQHandler 
.............. (they continue)  
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How to change where to go on an interrupt? 
Answer: edit the interrupt vector table [IVT] 
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NVIC/Interrupt configuration registers 

•  ICTR  Interrupt Controller Type Register (RW) 
•  ISER  Interrupt Set-Enable Register (RW) 
•  ICER  Interrupt Clear-Enable Register (RW) 
•  ISPR  Interrupt Set-Pending Register (RW) 
•  ICPR  Interrupt Clear-Pending Register (RW) 
•  IABR  Interrupt Active Bit Register (RO) 
•  IPR   Interrupt Priority Register (RW) 
•  AIRC  Application Interrupt and Reset Control 



Enabling and disabling interrupt sources 
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Exercise: Enabling interrupt sources 
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•  Implement the following function to enable external 
interrupt #x when called: 

 
void enable_interrupt(int x) { 
  /* your code here */ 
} 

•  Umm, so what do we have to do? 
–  Use top (32-5)=27 bits of x to select the word offset 
–  Offset from what, you ask?  Base of ISER (0xE000E100) 
–  Use the bottom five bits of x to select bit position 
–  Write a ‘1’ to that bit position at memory addr=base+offset 
–  You’re done! 



Pending interrupts 
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The normal case.  Once Interrupt request is seen, processor puts it in  
“pending” state even if hardware drops the request.  
IPS is cleared by the hardware once we jump to the ISR. 

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4 
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In this case, the processor never took the interrupt because we cleared the  
IPS by hand (via a memory-mapped I/O register) 
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Answer 
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Interrupt pulses before entering ISR 
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Answer 
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Interrupt Priority 

•  What do we do if several interrupts arrive simultaneously? 
•  NVIC allows priorities for (almost) every interrupt 
•  3 fixed highest priorities, up to 256 programmable priorities 

–  128 preemption levels 
–  Not all priorities have to be implemented by a vendor 

–  SmartFusion has 32 priority levels, i.e. 0x00, 0x08, … , 0xF8 

•  Higher priority interrupts can pre-empt lower priorities 
•  Priority can be sub-divided into priority groups 

–  Splits priority register into two halves, preempt priority & subpriority 
–  Preempt priority: indicates if an interrupt can preempt another 
–  Subpriority: used to determine which is served first if two interrupts of 

same group arrive concurrently 
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Interrupt Priority (2) 

•  Interrupt priority level registers 
–  Range: 0xE000E400 to 0xE000E4EF 
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Preemption Priority and Subpriority 
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PRIMASK, FAULTMASK, and BASEPRI registers 

•  What if we quickly want to disable all interrupts? 
•  Write 1 into PRIMASK to disable all interrupts except NMI 

–  MOV  R0, #1 
–  MSR  PRIMASK, R0  ; MSR and MRS are special instructions 

•  Write 0 into PRIMASK to enable all interrupts 

•  FAULTMASK is the same as PRIMASK, but it also blocks 
hard faults (priority = -1) 

•  What if we want to disable all interrupts below a certain 
priority? 

•  Write priority into BASEPRI register 
–  MOV  R0, #0x60 
–  MSR  BASEPRI, R0 
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Masking 
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Interrupt Service Routines 

•  Automatic saving of registers upon exception 
–  PC, PSR, R0-R3, R12, LR 
–  This occurs over data bus 

•  While data bus busy, fetch exception vector 
–  i.e. target address of exception handler 
–  This occurs over instruction bus 

•  Update SP to new location 
•  Update IPSR (low part of xPSR) with exception new # 
•  Set PC to vector handler 
•  Update LR to special value EXC_RETURN 
•  Several other NVIC registers gets updated 
•  Latency can be as short as 12 cycles (w/o mem delays) 
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The xPSR register layout 
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ARM interrupt summary 

1.  We’ve got a bunch of memory-mapped registers 
that control things (NVIC) 
–  Enable/disable individual interrupts 
–  Set/clear pending 
–  Interrupt priority and preemption 

 

2.  We’ve got to understand how the hardware 
interrupt lines interact with the NVIC 

3.  And how we figure out where to set the PC to 
point to for a given interrupt source. 
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1. NVIC registers (example) 
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1. More registers (example) 
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1. Yet another part of the NVIC registers! 
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2. How external lines interact with the NVIC 
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The normal case.  Once Interrupt request is seen, processor puts it in  
“pending” state even if hardware drops the request.  
IPS is cleared by the hardware once we jump to the ISR. 

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4 



3. How the hardware figures out what to set the PC to 

g_pfnVectors: 
    .word  _estack 
    .word  Reset_Handler 
    .word  NMI_Handler 
    .word  HardFault_Handler 
    .word  MemManage_Handler 
    .word  BusFault_Handler 
    .word  UsageFault_Handler 
    .word  0 
    .word  0 
    .word  0 
    .word  0 
    .word  SVC_Handler 
    .word  DebugMon_Handler 
    .word  0 
    .word  PendSV_Handler 
    .word  SysTick_Handler 
    .word  WdogWakeup_IRQHandler 
    .word  BrownOut_1_5V_IRQHandler 
    .word  BrownOut_3_3V_IRQHandler 
.............. (they continue)  
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Discussion: So let’s say a GPIO pin goes high 
 - When will we get an interrupt? 
 - What happens if the interrupt is allowed to proceed? 
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What happens when we return from an ISR? 
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•  Interrupt exiting process 
–  System restoration needed (different from branch) 
–  Special LR value could be stored (0xFFFFFFFx) 

•  Tail chaining 
–  When new exception occurs 
–  But CPU handling another exception of same/higher priority 
–  New exception will enter pending state 
–  But will be executed before register unstacking 
–  Saving unnecessary unstacking/stacking operations 
–  Can reenter hander in as little as 6 cycles  

•  Late arrivals (ok, so this is actually on entry) 
–  When one exception occurs and stacking commences 
–  Then another exception occurs before stacking completes 
–  And second exception of higher preempt priority arrives 
–  The later exception will be processed first 



Example of Complexity: The Reset Interrupt 

1) No	power	
2)  System	is	held	in	RESET	as	long	as	VCC15	<	0.8V	

a)  In	reset:	registers	forced	to	default	
b) RC-Osc	begins	to	oscillate	
c)  MSS_CCC	drives	RC-Osc/4	into	FCLK	
d)  PORESET_N	is	held	low	

3) Once	VCC15GOOD,	PORESET_N	goes	high	
a) MSS	reads	from	eNVM	address	0x0	and	0x4 
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