EECS 373

Design of Microprocessor-Based Systems

Ron Dreslinski
University of Michigan

Lecture 6 & 7: Interrupts (end of slides on Wednesday)

September 26t & 28t
Exceptions, Traps, Faults & ARM’s Nested Vectored Interrupt Controller

Slides developed in part by Prabal Dutta and Mark Brehob

Administrative

* HW2 Due Today

* Prof. Dreslinski Office hours changed this
week, they will be:
— Tuesday 2:30-3:30pm
— Wednesday 3-4pm

* Fire Alarm Testing on Wednesday @1:30
— WE WILL HAVE CLASS

This Week: Interrupts, exceptions, traps, faults, & NVIC

traps &
exceptlons
C
EECS 370 l' - = 1—Assembly
ISA Software t sver) ctr ovrito] Machine Code
Hardware _ﬁ{: I Cpq I
. INT# I I
_ - -A - ’ | | I
interruptsd’ l | System Buses
terrupts : i . “AHB/APB
M interrupts P /t“ - —— ¢ N
v 1! v 1 v 1 v 1 v 1
l
l
| Internal &
GPIO/|NTI Timers USART DAC/ADC External
i | Memory
|
N
Internal f
External = -
N\ &\\,Q\‘ ’ée \‘}e % 63\ &

Dealing with asynchronous events

e Many sources of “events” during program execution
- Application makes a system call
- Software executes instruction illegally (e.g. divides by zero)
- Peripheral needs attention or has completed a requested action

« How do we know that an event has occurred?

e Broadly, two options to “detect” events
- Polling
« We can repeatedly poll the app/processor/peripherals
« When an event occurs, detect this via a poll and take action
- Interrupts
» Let the app/processors/peripheral notify us instead
« Take action when such a notification occurs (or shortly later)

Polling-Driven Application

Recall pushbutton-LED example

mov ro, #0x4 % PBS MMIO address
mov r1, #0x5 % LED MMIO address
loop: ldr r2, [r0, #0] % Read value from switch [1 cycle]
str r2 [r1, #0] % Save value to LED [1 cycle]
b loop % Repeat these steps [1 cycle]

This is a polling-driven application
Software constantly loops, polling and (re)acting
However, it doesn’t do anything else useful!

The Problem with Polling

« If we want to do other work, we might call a routine:

mov ro, #0x4 % PBS MMIO address
mov r1, #0x5 % LED MMIO address

loop: ldr r2, [r0, #0] % Read value from switch [1 cycle]
str r2 [r1, #0] % Save value to LED [1 cycle]
bl do_some_work % Do some other work [100 cycles]
b loop % Repeat these steps [1 cycle]

e Polling affects the responsiveness of PBS < LED path!
-Whenever we’re “doing some work,” we not polling PBS
-And the more “other work” we do, the worse the latency gets

e And it affects the efficiency of the processor
-The ldr/str values don’t change very either much
-So, the processor is mostly wasting CPU cycles (and energy)

Polling trades off efficiency and responsiveness

mov ro, #0x4 % PBS MMIO address
mov r1, #0x5 % LED MMIO address

loop: ldr r2, [r0, #0] % Read value from switch [1 cycle]
str r2 [r1, #0] % Save value to LED [1 cycle]
bl do_some_work % Do some other work [100 cycles]
b loop % Repeat these steps [1 cycle]

Efficiency

- Minimizing useless work

- Maximizing useful work

- Saving cycles & energy
Responsiveness

- Minimizing latency

- Tight event-action coupling
Can we do better? Yes!

Efficiency
[

Responsiveness

Interrupts

Merriam-Webster:
- “to break the uniformity or continuity of”

e Informs a program of some external events
e Breaks execution flow

Key questions:

 Where do interrupts come from?

How do we save state for later continuation?
How can we ignore interrupts?

How can we prioritize interrupts?

How can we share interrupts?

Interrupts

Interrupt (a.k.a. exception or trap):
* An event that causes the CPU to stop executing current program
« Begin executing a special piece of code
« (Called an interrupt handler or interrupt service routine (ISR)
 Typically, the ISR does some work
« Then resumes the interrupted program

Interrupts are really glorified procedure calls, except that they:
e Can occur between any two instructions
e Are “transparent” to the running program (usually)
e Are not explicitly requested by the program (typically)
e Call a procedure at an address determined by the type of
interrupt, not the program

Two basic types of interrupts
(1/2)

e Those caused by an instruction
- Examples:
e TLB miss
e [llegal/unimplemented instruction
edivbyO
e SVC (supervisor call, e.g.: SVC #3)
- Names:
e Trap, exception

Two basic types of interrupts
(2/2)

e Those caused by the external world
- External device

Reset button

Timer expires

Power failure

- System error

e Names:
- interrupt, external interrupt

External interrupt types

e Two main types
- Level-triggered
- Edge-triggered

Level-triggered interrupts

e Basics:

Signaled by asserting a line low or high

Interrupting device drives line low or high and holds it there until
it is serviced

Device deasserts when directed to or after serviced
e Requires some way to tell it to stop.

e Sharing?

Can share the line among multiple devices
Often open-collector or HiZ
o Active devices assert the line, inactive devices let the line float
Easy to share line w/o losing interrupts
But servicing increases CPU load
And requires CPU to keep cycling through to check
Different ISR costs suggests careful ordering of ISR checks
Can’t detect a new interrupt when one is already asserted

Edge-triggered interrupts

e Basics:

Signaled by a level *transition* (e.g. rising/falling edge)
Interrupting device drives a pulse onto INT line

e Sharing *is* possible

INT line has a pull up and all devices are OC/QOD.

Could we miss an interrupt? Maybe...if close in time

What happens if interrupts merge? Need one more ISR pass
Easy to detect "new interrupts”

Pitfalls: spurious edges, missed edges

e Source of "lockups” in early computers

Exercise: Another case where polling is slow—sharing!

Assume you have
- n possible interrupt sources
- That all share a single interrupt line and/or handler
- That all fire at about the same rate on average
- And that require about the same amount of time to poll

e The handler might look something like this

isr_handler: bl chk_interrupt_src_1 % 100 cycles
bl chk_interrupt_src_2 % 100 cycles
bl chk_interrupt_src_n % 100 cycles
bx lr

e How does average interrupt processing time grow with n?

e How would you order chk_interrupt_src if the interrupts
fired at different rates or had different polling times?

Why are interrupts useful? Example: I/0 Data Transfer

Two key questions to determine how data is transferred to/
from a non-trivial I/0 device:

1. How does the CPU know when data are available?
a. Polling

b. Interrupts

2. How are data transferred into and out of the device?
a. Programmed I/0
b. Direct Memory Access (DMA)

How it works

Something tells the processor core there is an interrupt

Core transfers control to code that needs to be executed

Said code “returns” to old program

Much harder then it looks.
- Why?

Devil is in the details

e How do you figure out where to branch to?

e How to you ensure that you can get back to where you
started?

« Don’t we have a pipeline? What about partially executed
instructions (and OoO instructions)?

 What if we get an interrupt while we are processing an
interrupt?

e What if we are in a “critical section?”

Where

e If you know what caused the interrupt
then you want to jump to the code that

handles that interrupt.

- If you number the possible interrupt cases,
and an interrupt comes in, you can just
branch to a location, using that number as an
offset (this is a branch table)

- If you don’t have the number, you need to
poll all possible sources of the interrupt to

see who caused it.
e Then you branch to the right code

Get back to where you once belonged

e Need to store the return address somewhere.
- Stack might be a scary place.

e That would involve a load/store and might cause an
interrupt (page fault)!

- So a dedicated register seems like a good choice
e But that might cause problems later...
 What happens if another interrupt happens?

- Could that overwrite the register?

Modern architectures

A modern processor has many (often 50+)
instructions in-flight at once.

- What do we do with them?

e Drain the pipeline?
- What if one of them causes an exception?

e Punt all that work
- Slows us down

o What if the instruction that caused the exception
was executed before some other instruction?
- What if that other instruction caused an interrupt?

Nested interrupts

 If we get one interrupt while handling
another, what to do?
- Just handle it
o But what about that dedicated register?
« What if I’'m doing something that can’t be stopped?
- Ignore it
e But what if it is important?
- Prioritize
« Take those interrupts you care about. Ignore the
rest

o Still have dedicated register problems.

Critical section

« We probably need to ignore some interrupts but
take others.

- Probably should be sure our code can’t cause an
exception.

- Use same prioritization as before.

 What about instructions that shouldn’t be
interrupted?
- Disable interrupts while processing an interrupt?

High-level review of interrupts

« Why do we need them? Why are the alternatives
unacceptable?

- Convince me!

e What sources of interrupts are there?
- Hardware and software!

« What makes them difficult to deal with?

- Interrupt controllers are complex: there is a lot to do!

« Enable/disable, prioritize, allow premption (nested
interrupts), etc.

- Software issues are non-trivial
e Can’t trash work of task you interrupted
e Need to be able to restore state
» Shared data issues are a real pain

Our processor—ARM Cortex-M3

e Over 100 interrupt sources
- Power on reset, bus errors, 1/0 pins changing state, data in
on a serial bus etc.
e Need a great deal of control
- Ability to enable and disable interrupt sources
- Ability to control where to branch to for each interrupt
- Ability to set interrupt priorities
 Who wins in case of a tie
e Can interrupt A interrupt the ISR for interrupt B?
- If so, A can “preempt” B.

o All that control will involve memory mapped 1/0.
- And given the number of interrupts that’s going to be a pain

Basic interrupt processing

The stack (PSP or MSP)

i
Higher Addresses _
o Stacking Sp—> } it
- Automatically by CPU PSR data
- Maintains ABI semantics
- ISRs can be C functions PC
LR
e Vector Fetch R12
- We’ll see this next R3
R2
o Exit: update of SP, LR, PC R1
RO
Free
} stack
space

Lower Addresses
4

SmartFusion interrupt sources

Table 1-5+ SmartFusion Interrupt Sources

INTISR[64] ACE_PCO_FLAGO_IRQ ACE
INTISR[65] ACE_PCO_FLAG1_IRQ ACE
INTISR[66] ACE_PCO_FLAG2_IRQ ACE
INTISR[67] ACE_PCO_FLAG3_IRQ ACE
INTISR[68] ACE_PC1_FLAGO_IRQ ACE
INTISR[69] ACE_PC1_FLAG1_IRQ ACE
INTISR[70] ACE_PC1_FLAG2_IRQ ACE
INTISR[71] ACE_PC1_FLAG3_IRQ ACE
INTISR[72] ACE_PC2_FLAGO_IRQ ACE
INTISR[73] ACE_PC2_FLAG1_IRQ ACE
INTISR[74] ACE_PC2_FLAG2_IRQ ACE
INTISR[75] ACE_PC2_FLAG3_IRQ ACE
INTISR[76] ACE_ADCO_DATAVALID_IRQ ACE
INTISR[77] ACE_ADC1_DATAVALID_IRQ ACE
INTISR[78] ACE_ADC2_DATAVALID_IRQ ACE
INTISR[79] ACE_ADCO_CALDONE_IRQ ACE
INTISR[80] ACE_ADC1_CALDONE_IRQ ACE
INTISR[81] ACE_ADC2_CALDONE_IRQ ACE
INTISR[82] ACE_ADCO_CALSTART_IRQ ACE
INTISR[83] ACE_ADC1_CALSTART_IRQ ACE
INTISR[84] ACE_ADC2_CALSTART_IRQ ACE
INTISR[85] ACE_COMPO_FALL_IRQ ACE
INTISR[86] ACE_COMP1_FALL_IRQ ACE
INTISR[87] ACE_COMP2_FALL_IRQ ACE
INTISR[88] ACE_COMP3_FALL_IRQ ACE
INTISR[89] ACE_COMP4_FALL_IRQ ACE
INTISR[90] ACE_COMPS5_FALL_IRQ ACE
INTISR[91] ACE_COMP6_FALL_IRQ ACE
INTISR[92] ACE_COMP7_FALL_IRQ ACE
INTISR[93] ACE_COMPS8_FALL_IRQ ACE
INTISR[94] ACE_COMP9_FALL_IRQ ACE
INTISR[95] ACE_COMP10_FALL_IRQ ACE

Cortex-M3 NVIC Input IRQ Label IRQ Source
NMI WDOGTIMEOUT_IRQ WATCHDOG
INTISR[O] WDOGWAKEUP_IRQ WATCHDOG
INTISR[1] BROWNOUT1_5V_IRQ VR/PSM
INTISR[2] BROWNOUT3_3V_IRQ VR/PSM
INTISR[3] RTCMATCHEVENT_IRQ RTC
INTISR[4] PU_N_IRQ RTC
INTISR[5] EMAC_IRQ Ethernet MAC
INTISR[6] M3_IAP_IRQ IAP
INTISR[7] ENVM_0_IRQ ENVM Controller
INTISR[8] ENVM_1_IRQ ENVM Controller
INTISR[9] DMA_IRQ Peripheral DMA
INTISR[10] UART_0_IRQ UART_0
INTISR[11] UART_1_IRQ UART_1
INTISR[12] SPI_O_IRQ SPI_O
INTISR[13] SPI_1_IRQ SPI_1
INTISR[14] 12C_0_IRQ 12C_0
INTISR[15] 12C_0_SMBALERT_IRQ 12C_0
INTISR[16] 12C_0_SMBSUS_IRQ 12C_0
INTISR[17] 12C_1_IRQ 12C_1
INTISR[18] 12C_1_SMBALERT_IRQ 12C_1
INTISR[19] 12C_1_SMBSUS_IRQ 12C_1
INTISR[20] TIMER_1_IRQ TIMER
INTISR[21] TIMER_2_IRQ TIMER
INTISR[22] PLLLOCK_IRQ MSS_CCC
INTISR[23] PLLLOCKLOST_IRQ MSS_CCC
INTISR[24] ABM_ERROR_IRQ AHB BUS MATRIX
INTISR[25] Reserved Reserved
INTISR[26] Reserved Reserved
INTISR[27] Reserved Reserved
INTISR[28] Reserved Reserved
INTISR[29] Reserved Reserved
INTISR[30] Reserved Reserved
INTISR[31] FAB_IRQ FABRIC INTERFACE
INTISR[32] GPIO_0_IRQ GPIO
INTISR[33] GPIO_1_IRQ GPIO
INTISR[34] GPIO_2_IRQ GPIO
inTientac Ao o inA ~oin

GPIO_3_IRQ to GPIO_31_IRQ cut

54 more ACE specific interrupts

Table 7.1 List of System Exceptions

Exception

Number Exception Type Priority Description

1 Reset -3 (Highest) Reset

2 NMI -2 Nonmaskable interrupt (external NMI input)

3 Hard fault -1 All fault conditions if the corresponding fault
handler is not enabled

4 MemManage fault Programmable Memory management fault; Memory
Protection Unit (MPU) violation or access
to illegal locations

5 Bus fault Programmable Bus error; occurs when Advanced High-
Performance Bus (AHB) interface receives an
error response from a bus slave (also called
prefetch abort if it is an instruction fetch or
data abort if it is a data access)

6 Usage fault Programmable Exceptions resulting from program error or
trying to access coprocessor (the Cortex-M3
does not support a coprocessor)

7-10 Reserved NA -

11 SvC Programmable Supervisor Call

12 Debug monitor Programmable Debug monitor (breakpoints, watchpoints, or
external debug requests)

13 Reserved NA —

14 PendSV Programmable Pendable Service Call

15 SYSTICK Programmable System Tick Timer

Table 7.2 List of External Interrupts

Exception Number Exception Type Priority

16 External Interrupt #0 Programmable

17 External Interrupt #1 Programmable

255 External Interrupt #239 Programmable

And the interrupt vectors
(in startup_a2fxxxm3.s found in CMSIS, startup_gcc)

Table 7.1 List of System Exceptions

g pfnVectors:

.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word

_estack

Reset Handler

NMI Handler
HardFault Handler
MemManage Handler
BusFault Handler
UsageFault Handler
0

0

0

0

SVC Handler
DebugMon Handler
0

PendSV_Handler
SysTick Handler

WdogWakeup IRQHandler

Exception

Number Exception Type Priority Description

1 Reset -3 (Highest) Reset

2 NMI -2 Nonmaskable interrupt (external NMI input)

3 Hard fault -1 All fault conditions if the corresponding fault
handler is not enabled

4 MemManage fault Programmable Memory management fault; Memory
Protection Unit (MPU) violation or access
to illegal locations

5 Bus fault Programmable Bus error; occurs when Advanced High-
Performance Bus (AHB) interface receives an
error response from a bus slave (also called
prefetch abort if it is an instruction fetch or
data abort if it is a data access)

6 Usage fault Programmable Exceptions resulting from program error or
trying to access coprocessor (the Cortex-M3
does not support a coprocessor)

7-10 Reserved NA -

11 SvVC Programmable Supervisor Call

12 Debug monitor Programmable Debug monitor (breakpoints, watchpoints, or
external debug requests)

13 Reserved NA -

14 PendSV Programmable Pendable Service Call

15 SYSTICK Programmable System Tick Timer

Table 7.2 List of External Interrupts

Exception Number Exception Type Priority

16 External Interrupt #0 Programmable

17 External Interrupt #1 Programmable

255 External Interrupt #239 Programmable

BrownOut 1 5V IRQHandler
BrownOut 3 3V IRQHandler
ceteteeeen.... (theycontinue)

How to change where to go on an interrupt?
Answer: edit the interrupt vector table [IVT]

.word _estack

.word Reset Handler
.word NMI Handler

.word HardFault Handler
.word MemManage Handler
.word BusFault Handler
30 .word UsageFault Handler

W

oy O

N N NN N

o LD

N

31 .word O
32 .word O
1893 * Reset Handler

W

’ y
w0 W wwuwuwuw

.global Reset Handler

. type Reset Handler, %function
Reset Handler:
_Sstart:

-
] oy n

[

NVIC/Interrupt configuration registers

e ICTR
e ISER
e ICER
e ISPR
« ICPR
« |IABR
e IPR

e AIRC

Interrupt Controller Type Register (RW)
Interrupt Set-Enable Register (RW)
Interrupt Clear-Enable Register (RW)
Interrupt Set-Pending Register (RW)
Interrupt Clear-Pending Register (RW)
Interrupt Active Bit Register (RO)
Interrupt Priority Register (RW)
Application Interrupt and Reset Control

Enabling and disabling interrupt sources

e Interrupt Set Enable and Clear Enable
- OxEOOOE100-0xEOOOE11C, OXEOOOE180-0xEOOOE19C

OxEOOOE100 SETENAO R/W 0 Enable for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)

bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

OxEOOOE180 CLRENAO R/W 0 Clear enable for external interrupt #0-31
bit[0] for interrupt #0
bit[1] for interrupt #1

bit[31] for interrupt #31
Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current enable status

Configuring the NVIC (2)

e Set Pending & Clear Pending
- OxEOOOE200-0xEOOOE21C, OXxEOOOE280-0xEOOOE29C

OxEOOOE200

SETPENDO

R/W

Pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)
bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

OxEOOOE280

CLRPENDO

R/W

Clear pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)
bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current pending status

Configuring the NVIC (3)

e Interrupt Active Status Register

- OxEOOOE300-0xEOOOE31C

Address Name Type Reset Value Description

OxEOOOE300 ACTIVEO R 0 Active status for external interrupt #0-31
bit[0] for interrupt #0
bit[1] for interrupt #1
bit[31] for interrupt #31

OxEOOOE304 ACTIVE1 R 0 Active status for external interrupt #32-63

Exercise: Enabling interrupt sources

e Implement the following function to enable external
interrupt #x when called:

void enable_interrupt(int x) {
/* your code here */

}

« Umm, so what do we have to do?

Use top (32-5)=27 bits of x to select the word offset

Offset from what, you ask? Base of ISER (OXxEOOOE100)

Use the bottom five bits of x to select bit position

Write a ‘1’ to that bit position at memory addr=base+offset
You’re done!

Pending interrupts

f Hardware cleared interrupt request

Interrupt
Request \
Interrupt
Pending Status
/ Handler Mode
Thread
Processor Mode

Mode

The normal case. Once Interrupt request is seen, processor puts it in
“pending” state even if hardware drops the request.
IPS is cleared by the hardware once we jump to the ISR.

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4

Interrupt

Request \

Interrupt
Pending Status r
Pending status
cleared by software
Thread
Processor Mode
Mode

In this case, the processor never took the interrupt because we cleared the
IPS by hand (via a memory-mapped I/0 register)

Active Status set during handler execution

Interrupt request
x~~ cleared by software

Interrupt

Request \

Interrupt
Pending Status

Interrupt
Active Status

|

Handler Mode o~ Interrupt returned

Processor Thread
Mode Mode

Interrupt Request not Cleared

Interrupt request stays active

Interrupt

Request \

Interrupt
Pending Status

Interrupt
Active Status

Handler Mode

Processor Thread
Mode Mode

Answer

Interrupt Interrupt request stay active

request

Interrupt

[
pending status \\

Interrupt
active statt?s Interrupt return /’U
Handler mode \y

Processor Thread / \A\

mode mode Interrupt reentered

Interrupt pulses before entering ISR

Multiple interrupt pulses
before entering ISR

Interrupt

Request \

Interrupt
Pending Status

Interrupt
Active Status

Processor
Mode

Answer

Interrupt
request

Interrupt
pending status

Interrupt
active status

Processor
mode

Multiple interrupt pulses
before entering ISR

\

Thread
mode

Handler mode

/ Interrupt return \

New Interrupt Request after Pending Cleared

Interrupt request
pulsed again

Interrupt

Request \

Interrupt
Pending Status

Interrupt
Active Status

Handler Mode

Thread

Processor Mode
Mode

Interrupt Priority

What do we do if several interrupts arrive simultaneously?
NVIC allows priorities for (almost) every interrupt
3 fixed highest priorities, up to 256 programmable priorities

- 128 preemption levels
- Not all priorities have to be implemented by a vendor

Bit/ |Bité6é |[Bit5 |Bit4 |Bit3 |Bit2 |[Bit1 |BitO

Implemented Not implemented, read as zero

- SmartFusion has 32 priority levels, i.e. 0x00, 0x08, ... , OxF8

Higher priority interrupts can pre-empt lower priorities

Priority can be sub-divided into priority groups
- Splits priority register into two halves, preempt priority & subpriority
- Preempt priority: indicates if an interrupt can preempt another

- Subpriority: used to determine which is served first if two interrupts of
same group arrive concurrently

Interrupt Priority (2)

e Interrupt priority level registers
- Range: OxEOOOE400 to OXxEOOOE4EF

Address Name Type Reset Value Description

OxEOOOE400 PRI_O R/W 0 (8-bit) Priority-level external interrupt #0

OxEOOOE401 PRI_1 R/W 0 (8-bit) Priority-level external interrupt #1

OxEOOOE41F PRI_31 R/W 0 (8-bit) Priority-level external interrupt #31

Preemption Priority and Subpriority

Priority Group Preempt Priority Field Subpriority Field
0 Bit [7:1] Bit [0]

1 Bit [7:2] Bit [1:0]

2 Bit [7:3] Bit [2:0]

3 Bit [7:4] Bit [3:0]

- Bit [7:5] Bit [4:0]

5 Bit [7:6] Bit [5:0]

6 Bit [7] Bit [6:0]

7 None Bit [7:0]

Application Interrupt and Reset Control Register (Address OXEOOOEDOC)

Bits Name Type Reset Description

Value
31:16 VECTKEY R/W - Access key; 0xOSFA must be written to this field to write
to this register, otherwise the write will be ignored; the
read-back value of the upper half word is 0xFAOS

15 ENDIANNESS R - Indicates endianness for data: 1 for big endian (BE8)
and 0 for little endian; this can only change after a reset

10:8 PRIGROUP R/W 0 Priority group

2 SYSRESETREQ w - Requests chip control logic to generate a reset

1 VECTCLRACTIVE | W - Clears all active state information for exceptions;

typically used in debug or OS to allow system to recover
from system error (Reset is safer)

0 VECTRESET wW - Resets the Cortex-M3 processor (except debug logic),
but this will not reset circuits outside the processor

PRIMASK, FAULTMASK, and BASEPRI registers

« What if we quickly want to disable all interrupts?

« Write 1 into PRIMASK to disable all interrupts except NMI
- MOV RO, #1
- MSR PRIMASK, RO ; MSR and MRS are special instructions

o Write 0 into PRIMASK to enable all interrupts

e FAULTMASK is the same as PRIMASK, but it also blocks
hard faults (priority = -1)

« What if we want to disable all interrupts below a certain
priority?
o Write priority into BASEPRI register

- MOV RO, #0x60
- MSR BASEPRI, RO

Masking

B1.4.3 The special-purpose mask registers

There are three special-purpose registers which are used for the purpose of priority boosting. Their function
1s explained in detail in Execution priority and priority boosting within the core on page B1-18:

. the exception mask register (PRIMASK) which has a 1-bit value

. the base priority mask (BASEPRI) which has an 8-bit value

. the fault mask (FAULTMASK) which has a 1-bit value.

All mask registers are cleared on reset. All unprivileged writes are ignored.

The formats of the mask registers are illustrated in Table B1-4.
Table B1-4 The special-purpose mask registers

31 8 7 1 0
PRIMASK RESERVED PM
FAULTMASK RESERVED FM

BASEPRI RESERVED BASEPRI

Interrupt Service Routines

Automatic saving of registers upon exception
- PC, PSR, RO-R3, R12, LR
- This occurs over data bus

While data bus busy, fetch exception vector
- i.e. target address of exception handler
- This occurs over instruction bus

e Update SP to new location

« Update IPSR (low part of xPSR) with exception new #

e Set PC to vector handler

 Update LR to special value EXC_RETURN

o Several other NVIC registers gets updated

e Latency can be as short as 12 cycles (w/o0 mem delays)

The xPSR register layout

The APSR. IPSR and EPSR registers are allocated as mutually exclusive bitfields within a 32-bit register.
The combination of the APSR. IPSR and EPSR registers is referred to as the xPSR register.

Table B1-2 The xPSR register layout

31 30 29 28 27 26 25 24 23 16 15 10 9 8 0

APSRIN|Z|C|V]|Q

IPSR 0 or Exception Number

EPSR ICIIT| T ICLIT a

ARM interrupt summary

1. We’ve got a bunch of memory-mapped registers
that control things (NVIC)

- Enable/disable individual interrupts
- Set/clear pending
- Interrupt priority and preemption

2. We’ve got to understand how the hardware
interrupt lines interact with the NVIC

3. And how we figure out where to set the PC to
point to for a given interrupt source.

1. NVIC registers (example)

e Set Pending & Clear Pending
- OxEOOOE200-0xEOOOE21C, OXEOOOE280-0xEOOOE29C

OxEOOOE200

SETPENDO

R/W

Pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)
bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

OxEOOOE280

CLRPENDO

R/W

Clear pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)
bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current pending status

1. More registers (example)

e Interrupt Priority Level Registers

- OxEOOOE400-OxEOOOE4EF

Address Name Type Reset Value Description

OxEOOOE400 PRI_O R/W 0 (8-bit) Priority-level external interrupt #0

OxEOOOE401 PRI_1 R/W 0 (8-bit) Priority-level external interrupt #1

OxEOOOE41F PRI_31 R/W 0 (8-bit) Priority-level external interrupt #31

1. Yet another part of the NVIC registers!

Priority Group Preempt Priority Field Subpriority Field
0 Bit [7:1] Bit [0]

1 Bit [7:2] Bit [1:0]

2 Bit [7:3] Bit [2:0]

3 Bit [7:4] Bit [3:0]

- Bit [7:5] Bit [4:0]

5 Bit [7:6] Bit [5:0]

6 Bit [7] Bit [6:0]

7 None Bit [7:0]

Application Interrupt and Reset Control Register (Address OXEOOOEDOC)

Bits Name Type Reset Description

Value
31:16 VECTKEY R/W - Access key; 0xOSFA must be written to this field to write
to this register, otherwise the write will be ignored; the
read-back value of the upper half word is 0xFAOS

15 ENDIANNESS R - Indicates endianness for data: 1 for big endian (BE8)
and 0 for little endian; this can only change after a reset

10:8 PRIGROUP R/W 0 Priority group

2 SYSRESETREQ w - Requests chip control logic to generate a reset

1 VECTCLRACTIVE | W - Clears all active state information for exceptions;

typically used in debug or OS to allow system to recover
from system error (Reset is safer)

0 VECTRESET \%\% - Resets the Cortex-M3 processor (except debug logic),
but this will not reset circuits outside the processor

2. How external lines interact with the NVIC

f Hardware cleared interrupt request

Interrupt
Request \
Interrupt
Pending Status
/ Handler Mode
Thread
Processor Mode

Mode

The normal case. Once Interrupt request is seen, processor puts it in
“pending” state even if hardware drops the request.
IPS is cleared by the hardware once we jump to the ISR.

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4

3. How the hardware figures out what to set the PC to

g pfnVectors:

.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word

_estack

Reset Handler

NMI Handler
HardFault Handler
MemManage Handler
BusFault Handler
UsageFault Handler
0

0

0

0

SVC Handler
DebugMon Handler
0

PendSV_Handler
SysTick Handler

WdogWakeup IRQHandler

Table 7.1 List of System Exceptions

Exception

Number Exception Type Priority Description

1 Reset -3 (Highest) Reset

2 NMI -2 Nonmaskable interrupt (external NMI input)

3 Hard fault -1 Al fault conditions if the corresponding fault
handler is not enabled

4 MemManage fault Programmable Memory management fault; Memory
Protection Unit (MPU) violation or access
to illegal locations

5 Bus fault Programmable Bus error; occurs when Advanced High-
Performance Bus (AHB) interface receives an
error response from a bus slave (also called
prefetch abort if it is an instruction fetch or
data abort if it is a data access)

6 Usage fault Programmable Exceptions resulting from program error or
trying to access coprocessor (the Cortex-M3
does not support a coprocessor)

7-10 Reserved NA —

11 SvVC Programmable Supervisor Call

12 Debug monitor Programmable Debug monitor (breakpoints, watchpoints, or
external debug requests)

13 Reserved NA -

14 PendSV Programmable Pendable Service Call

15 SYSTICK Programmable System Tick Timer

Table 7.2 List of External Interrupts

Exception Number Exception Type Priority

16 External Interrupt #0 Programmable

17 External Interrupt #1 Programmable

255 External Interrupt #239 Programmable

BrownOut 1 5V IRQHandler
BrownOut 3 3V IRQHandler
ceteteeeen.... (theycontinue)

Discussion: So let’s say a GPIO pin goes high
- When will we get an interrupt?
- What happens if the interrupt is allowed to proceed?

What happens when we return from an ISR?

e Interrupt exiting process
- System restoration needed (different from branch)
- Special LR value could be stored (OxFFFFFFFXx)
e Tail chaining
- When new exception occurs
- But CPU handling another exception of same/higher priority
- New exception will enter pending state
- But will be executed before register unstacking

- Saving unnecessary unstacking/stacking operations
- Can reenter hander in as little as 6 cycles

o Late arrivals (ok, so this is actually on entry)
- When one exception occurs and stacking commences
- Then another exception occurs before stacking completes
- And second exception of higher preempt priority arrives
- The later exception will be processed first

Example of Complexity: The Reset Interrupt

BGPSMENABLE#\":
ABPOWERON
VCC | VCC15 VCC15UP
X Detect
VCC33A [VCC33 VCC33UP
E Detect

BG and PSM

PSM_EN, O -
Power-Down

BROWNOUT3_3VINT

BROWNOUT1_5VINT

VCC33GOOD RMSS
VCC15GO0D eset
Controller
BGGOOD

~20 ps delay for NVM to power up

FPGA Is Programed

PORESET_N SYS REG

~100 ps delay before PSM is turned on to allow for BG to power up

Delay

PPB

IN
IN x

X Cortex-M3
XX

FPGAGOOD

1) No power

2) System is held in RESET as long as VCC15 < 0.8V

a) In reset: registers forced to default
b) RC-Osc begins to oscillate
c) MSS_CCC drives RC-Osc/4 into FCLK
d) PORESET_N is held low

3) Once VCC15GO0OD, PORESET N goes high

a) MSS reads from eNVM address 0x0 and 0x4

