
1

EECS 373
Design of Microprocessor-Based Systems

Ron Dreslinski
University of Michigan

Clocks, Counters, Timers, Capture, and Compare

Some slides by Mark Brehob, Prabal Dutta and Thomas Schmid

What happens when we return from an ISR?

2

•  Interrupt exiting process
–  System restoration needed (different from branch)
–  Special LR value could be stored (0xFFFFFFFx)

•  Tail chaining
–  When new exception occurs
–  But CPU handling another exception of same/higher priority
–  New exception will enter pending state
–  But will be executed before register unstacking
–  Saving unnecessary unstacking/stacking operations
–  Can reenter hander in as little as 6 cycles

•  Late arrivals (ok, so this is actually on entry)
–  When one exception occurs and stacking commences
–  Then another exception occurs before stacking completes
–  And second exception of higher preempt priority arrives
–  The later exception will be processed first

iPhone Clock App

3

•  World Clock – display
real time in multiple
time zones

•  Alarm – alarm at certain
(later) time(s).

•  Stopwatch – measure
elapsed time of an event

•  Timer – count down time
and notify when count
becomes zero

Motor/Light Control

4

•  Servo motors – PWM
signal provides control
signal

•  DC motors – PWM signals
control power delivery

•  RGB LEDs – PWM signals
allow dimming through
current-mode control

Methods from android.os.SystemClock

5

Standard C library’s <time.h> header file

6

Standard C library’s <time.h> header file: struct tm

7

Anatomy of a timer system

8

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

...
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

Anatomy of a timer system

9

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

What do we really want from our timing subsystem?

10

•  Wall clock date & time
•  Date: Month, Day, Year
•  Time: HH:MM:SS:mmm
•  Provided by a “real-time clock” or RTC

•  Alarm: do something (call code) at certain time later
•  Later could be a delay from now (e.g. Δt)
•  Later could be actual time (e.g. today at 3pm)

•  Stopwatch: measure (elapsed) time of an event
•  Instead of pushbuttons, could be function calls or
•  Hardware signals outside the processor

What do we really want from our timing subsystem?

11

•  Wall clock
•  datetime_t getDateTime()

•  Alarm
•  void alarm(callback, delta)
•  void alarm(callback, datetime_t)

•  Stopwatch: measure (elapsed) time of an event
•  t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
•  GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address

Wall Clock from a Real-Time Clock (RTC)

12

•  Often a separate module
•  Built with registers for

•  Years, Months, Days
•  Hours, Mins, Seconds

•  Alarms: hour, min, day
•  Accessed via

•  Memory-mapped I/O
•  Serial bus (I2C, SPI)

What do we really want from our timing subsystem?

13

•  Wall clock
•  datetime_t getDateTime()

•  Alarm
•  void alarm(callback, delta)
•  void alarm(callback, datetime_t)

•  Stopwatch: measure (elapsed) time of an event
•  t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
•  GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address

Anatomy of a timer system

14

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

Oscillators – RC

15

Oscillators – Crystal

16

Anatomy of a timer system

17

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

What do we really want from our timing subsystem?

18

•  Wall clock
•  datetime_t getDateTime()

•  Alarm
•  void alarm(callback, delta)
•  void alarm(callback, datetime_t)

•  Stopwatch: measure (elapsed) time of an event
•  t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
•  GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address

•  There	are	two	basic	ac/vi/es	one	wants	/mers	for:	
–  Measure	how	long	something	takes	

•  “Capture”	
–  Have	something	happen	once	or	every	X	/me	period	

•  “Compare”	

Why should we care?

•  FAN
–  Say you have a fan spinning and you want to know how fast it is

spinning. One way to do that is to have it throw an interrupt
every time it completes a rotation.

•  Right idea, but might take a while to process the interrupt,
heavily loaded system might see slower fan than actually
exists.

•  This could be bad.
–  Solution? Have the timer note immediately how long it took

and then generate the interrupt. Also restart timer
immediately.

•  Same issue would exist in a car when measuring speed
of a wheel turning (for speedometer or anti-lock
brakes).

Example # 1: Capture

•  Driving	a	DC	motor	via	PWM.	
– Motors	turn	at	a	speed	determined	by	the	
voltage	applied.	
• Doing	this	in	analog	can	be	hard.	

–  Need	to	get	analog	out	of	our	processor	
–  Need	to	amplify	signal	in	a	linear	way	(op-amp?)	

• Generally	prefer	just	switching	between	“Max”	and	
“Off”	quickly.	
–  Average	is	good	enough.	
–  Now	don’t	need	linear	amplifier—just	“on”	and	“off”.	
(transistor)	

–  Need	a	signal	with	a	certain	duty	cycle	and	
frequency.	
•  That	is	%	of	/me	high.	

Example # 2: Compare

•  Assume	1	MHz	CLK	
•  Design	“high-level”	circuit	to	

–  Generate	1.52	ms	pulse	
–  Every	6	ms	
–  Repeat	

•  How	would	we	generalize	this?	

Servo motor control: class exercise

SmartFusion Timer System

•  SysTick Timer
–  ARM requires every Cortex-M3 to have this timer
–  Essentially a 24-bit down-counter to generate system

ticks
–  Has its own interrupt
–  Clocked by FCLK with optional programmable divider

•  See Actel SmartFusion MSS User Guide for
register definitions

Timers on the SmartFusion

h_p://www.actel.com/documents/SmartFusion_MSS_UG.pdf	

Timers on the SmartFusion

Timers on the SmartFusion

•  System	/mer	
–  “The	System	Timer	consists	of	two	programmable		32-bit	

decremen/ng		counters	that	generate	interrupts	to	the	ARM®	
Cortex™-M3	and	FPGA	fabric.	Each		counter	has	two	possible	
modes	of	opera/on:	Periodic	mode	or	One-Shot	mode.		The	
two	/mers	can	be	concatenated	to	create	a	64-bit	/mer	with	
Periodic	and	One-Shot	modes.	The	two	32-bit	/mers	are	
iden/cal”	

h_p://www.actel.com/documents/SmartFusion_MSS_UG.pdf	

Timers on the SmartFusion

Anatomy of a timer system

28

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

•  You	never	have	enough	/mers.	
–  Never.	

•  So	what	are	we	going	to	do	about	it?	
–  How	about	we	handle	in	sojware?	

Virtual Timers

•  Simple	idea.	
–  Maybe	we	have	10	events	we	might	want	to	generate.	

•  Just	make	a	list	of	them	and	set	the	/mer	to	go	off	for	the	
first	one.			
–  Do	that	first	task,	change	the	/mer	to	interrupt	for	
the	next	task.	

Virtual Timers

•  Only	works	for	“compare”	/mer	uses.	
•  Will	result	in	slower	ISR	response	/me	

–  May	not	care,	could	just	schedule	sooner…	

Problems?

•  Shared	user-space/ISR	data	structure.	
–  Inser/on	happens	at	least	some	of	the	/me	in	user	
code.	

–  Dele/on	happens	in	ISR.	
• We	need	cri/cal	sec/on	(disable	interrupt)	

•  How	do	we	deal	with	our	modulo	counter?	
–  That	is,	the	/mer	wraps	around.	
–  Why	is	that	an	issue?	

•  What	func/onality	would	be	nice?	
–  Generally	one-shot	vs.	repea/ng	events	
–  Might	be	other	things	desired	though	

•  What	if	two	events	are	to	happen	at	the	same	
/me?	
–  Pick	an	order,	do	both…	

Implementation Issues

•  What	data	structure?	
–  Data	needs	be	sorted	

•  Inser/ng	one	thing	at	a	/me	
–  We	always	pop	from	one	end	
–  But	we	add	in	sorted	order.	

Implementation Issues (continued)

Data	structures	

Some loose ends…glitches and all that

Full adder (from Wikipedia)

•  Assume
–  XOR delay = 0.2ns
–  AND delay = 0.1ns
–  OR delay = 0.1 ns

•  What is the worst
case propagation
delay for this
circuit?

x

y

z

Timing delays and propagation

x

y

z
Full adder (from Wikipedia)

Consider the adjacent circuit diagram. Assuming the XOR gates have
a delay of 0.2ns while AND and OR gates have a delay of 0.1ns, fill in
the following chart.

Only selected causality
arrows shown…

Glitches

Glitching: a summary

•  When input(s) change
–  The output can be wrong for a time
–  However, that time is bounded

•  And more so, the output can change during this
“computation time” even if the output ends up
where it started!

Effect of Glitches

•  Think back to EECS 370.
–  Why don’t glitches cause errors?

–  The trick is that the inputs all change
at the same time

•  In this case, the ID/EX registers all
change some time shortly after the
rising edge of the clock.

–  And we’ve chosen the clock period
such that the next edge doesn’t
happen until the combinational logic
has stopped glitching.

•  In fact, we use the worst-case
combinational logic delay in the whole
system when determining the clock
period!

So, how can glitches hurt us?

•  There are a handful of places:
–  Asynchronous resets

•  If you’ve got a flip-flop that has an
asynchronous reset (or “preset”) you need to
be sure the input can’t glitch.

–  That pretty much means you need a flip-
flop driving the input (which means you
probably should have used a sync. reset!)

–  Clocks
•  If you are using combinational logic to drive a

clock, you are likely going to get extra clock
edges.

Traditionally, CLR is used
to indicate async reset. “R”
or “reset” for sync. reset.

If clk is high and cond
glitches, you get extra
edges!

Design rules

1.  Thou shalt not use asynchronous
resets

2.  Thou shalt not drive a clock with
anything other than a clock or
directly off of a flip-flop’s output

X
X

Really? Seriously?

•  People do use asynchronous resets and clock gating!

–  Yep. And people use goto in C programs.
•  Sometimes they are the right thing.

–  But you have to think really hard about them to insure
that they won’t cause you problems.

–  Our “simple” bus used
combinational logic for
the clock

•  Works because REQ goes
low only after everything
else has stopped switching

–  So no glitch.
•  Not fun to reason about…

•  Avoid unless you must
–  Then think really carefully.

Setup and hold time

•  The idea is simple.
–  When the clock is changing

if the data is also changing it
is hard to tell what the data
is.

•  Hardware can’t always tell
–  And you can get meta-stable behavior too (very

unlikely but…)
–  So we have a “guard band” around the clock rising time

during which we don’t allow the data to change.
•  See diagram. We call the time before the clock-

edge “setup time” and the time after “hold time”

Example:

Fast and slow paths;
impact of setup and hold time

So what happens if we violate set-up or hold time?

•  Often just get one of the two values.
–  And that often is just fine.

•  Consider getting a button press from the user.
•  If the button gets pressed at the same time as the

clock edge, we might see the button now or next
clock.

–  Either is generally fine when it comes to human
input.

–  But bad things could happen.
•  The flip-flop’s output might not settle out to a “0” or

a “1”
–  That could cause later devices to mess up.

•  More likely, if that input is going to two places, one
might see a “0” the other a “1”

•  Important: don’t feed an async input to multiple
places!

Example

•  A common thing to do is reset a state machine
using a button.
–  User can “reset” the system.

•  Because the button transition could violate set-
up or hold time, some state bits of the state
machine might come out of reset at different
times.
–  And you quickly end up at a wrong or illegal state.

So…

•  Dealing with inputs not synchronized to our local clock
is a problem.
–  Likely to violate setup or hold time.

•  That could lead to things breaking.

•  So we need a clock synchronization circuit.
–  First flip-flop might have problems.
–  Second should be fine.
–  Sometimes use a third if

really paranoid
•  Safety-critical system for example.

Figure from http://www.eeweb.com/electronics-quiz/solving-metastability-design-issues, we use the same thing to deal with external inputs too!

Design rules

3.  Thou shalt use a clock
synchronization circuit when
changing clock domains or using
unclocked inputs!

➼
/* Synchonization of Asynchronous switch input */

always@(posedge clk)
begin
 sw0_pulse[0] <= sw_port[0];
 sw0_pulse[1] <= sw0_pulse[0];
 sw0_pulse[2] <= sw0_pulse[1];
end
 always @(posedge clk) SSELr <= {SSELr[1:0], SSEL};

49

Questions?

Comments?

Discussion?

