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What happens when we return from an ISR? 
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•  Interrupt exiting process 
–  System restoration needed (different from branch) 
–  Special LR value could be stored (0xFFFFFFFx) 

•  Tail chaining 
–  When new exception occurs 
–  But CPU handling another exception of same/higher priority 
–  New exception will enter pending state 
–  But will be executed before register unstacking 
–  Saving unnecessary unstacking/stacking operations 
–  Can reenter hander in as little as 6 cycles  

•  Late arrivals (ok, so this is actually on entry) 
–  When one exception occurs and stacking commences 
–  Then another exception occurs before stacking completes 
–  And second exception of higher preempt priority arrives 
–  The later exception will be processed first 



iPhone Clock App 

3 

•  World Clock – display 
real time in multiple 
time zones 

•  Alarm – alarm at certain 
(later) time(s).  

•  Stopwatch – measure 
elapsed time of an event 

•  Timer – count down time 
and notify when count 
becomes zero 



Motor/Light Control 
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•  Servo motors – PWM 
signal provides control 
signal 

•  DC motors – PWM signals 
control power delivery 

•  RGB LEDs – PWM signals 
allow dimming through 
current-mode control 



Methods from android.os.SystemClock 
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Standard C library’s <time.h> header file 
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Standard C library’s <time.h> header file: struct tm 
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Anatomy of a timer system 
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module timer(clr, ena, clk, alrm); 
  input clr, ena, clk;
  output alrm;
  reg alrm;
  reg [3:0] count;

  always @(posedge clk) begin
    alrm <= 0;
    if (clr) count <= 0;
    else count <= count+1;
  end
endmodule

...
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O 

R/W R/W R/W 

typedef struct timer {
  timer_handler_t handler;
  uint32_t time;
  uint8_t mode;
  timer_t* next_timer;
} timer_t;

timer_tick:
  ldr r0, count;
  add r0, r0, #1
  ... 



Anatomy of a timer system 
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module timer(clr, ena, clk, alrm); 
  input clr, ena, clk;
  output alrm;
  reg alrm;
  reg [3:0] count;

  always @(posedge clk) begin
    alrm <= 0;
    if (clr) count <= 0;
    else count <= count+1;
  end
endmodule

timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O 

R/W R/W R/W 

typedef struct timer {
  timer_handler_t handler;
  uint32_t time;
  uint8_t mode;
  timer_t* next_timer;
} timer_t;

timer_tick:
  ldr r0, count;
  add r0, r0, #1
  ... 



What do we really want from our timing subsystem? 
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•  Wall clock date & time 
•  Date: Month, Day, Year 
•  Time: HH:MM:SS:mmm 
•  Provided by a “real-time clock” or RTC 

•  Alarm: do something (call code) at certain time later 
•  Later could be a delay from now (e.g. Δt) 
•  Later could be actual time (e.g. today at 3pm) 

•  Stopwatch: measure (elapsed) time of an event 
•  Instead of pushbuttons, could be function calls or 
•  Hardware signals outside the processor 



What do we really want from our timing subsystem? 
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•  Wall clock 
•  datetime_t getDateTime() 

•  Alarm 
•  void alarm(callback, delta) 
•  void alarm(callback, datetime_t) 

•  Stopwatch: measure (elapsed) time of an event 
•  t1 = now(); … ; t2 = now(); dt = difftime(t2, t1); 
•  GPIO_INT_ISR: 

LDR R1, [R0, #0]  % R0=timer address 



Wall Clock from a Real-Time Clock (RTC) 
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•  Often a separate module 
•  Built with registers for 

•  Years, Months, Days 
•  Hours, Mins, Seconds 

•  Alarms: hour, min, day 
•  Accessed via 

•  Memory-mapped I/O 
•  Serial bus (I2C, SPI) 



What do we really want from our timing subsystem? 
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•  Wall clock 
•  datetime_t getDateTime() 

•  Alarm 
•  void alarm(callback, delta) 
•  void alarm(callback, datetime_t) 

•  Stopwatch: measure (elapsed) time of an event 
•  t1 = now(); … ; t2 = now(); dt = difftime(t2, t1); 
•  GPIO_INT_ISR: 

LDR R1, [R0, #0]  % R0=timer address 



Anatomy of a timer system 
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module timer(clr, ena, clk, alrm); 
  input clr, ena, clk;
  output alrm;
  reg alrm;
  reg [3:0] count;

  always @(posedge clk) begin
    alrm <= 0;
    if (clr) count <= 0;
    else count <= count+1;
  end
endmodule

timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O 

R/W R/W R/W 

typedef struct timer {
  timer_handler_t handler;
  uint32_t time;
  uint8_t mode;
  timer_t* next_timer;
} timer_t;

timer_tick:
  ldr r0, count;
  add r0, r0, #1
  ... 



Oscillators – RC  
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Oscillators – Crystal  
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Anatomy of a timer system 
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module timer(clr, ena, clk, alrm); 
  input clr, ena, clk;
  output alrm;
  reg alrm;
  reg [3:0] count;

  always @(posedge clk) begin
    alrm <= 0;
    if (clr) count <= 0;
    else count <= count+1;
  end
endmodule

timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O 

R/W R/W R/W 

typedef struct timer {
  timer_handler_t handler;
  uint32_t time;
  uint8_t mode;
  timer_t* next_timer;
} timer_t;

timer_tick:
  ldr r0, count;
  add r0, r0, #1
  ... 



What do we really want from our timing subsystem? 
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•  Wall clock 
•  datetime_t getDateTime() 

•  Alarm 
•  void alarm(callback, delta) 
•  void alarm(callback, datetime_t) 

•  Stopwatch: measure (elapsed) time of an event 
•  t1 = now(); … ; t2 = now(); dt = difftime(t2, t1); 
•  GPIO_INT_ISR: 

LDR R1, [R0, #0]  % R0=timer address 



•  There	are	two	basic	ac/vi/es	one	wants	/mers	for:	
–  Measure	how	long	something	takes	

•  “Capture”	
–  Have	something	happen	once	or	every	X	/me	period	

•  “Compare”	

Why should we care? 



•  FAN 
–  Say you have a fan spinning and you want to know how fast it is 

spinning.  One way to do that is to have it throw an interrupt 
every time it completes a rotation.  

•  Right idea, but might take a while to process the interrupt, 
heavily loaded system might see slower fan than actually 
exists. 

•  This could be bad. 
–  Solution?  Have the timer note immediately how long it took 

and then generate the interrupt. Also restart timer 
immediately. 

•  Same issue would exist in a car when measuring speed 
of a wheel turning (for speedometer or anti-lock 
brakes). 

Example # 1: Capture 



•  Driving	a	DC	motor	via	PWM.	
– Motors	turn	at	a	speed	determined	by	the	
voltage	applied.	
• Doing	this	in	analog	can	be	hard.	

–  Need	to	get	analog	out	of	our	processor	
–  Need	to	amplify	signal	in	a	linear	way	(op-amp?)	

• Generally	prefer	just	switching	between	“Max”	and	
“Off”	quickly.	
–  Average	is	good	enough.	
–  Now	don’t	need	linear	amplifier—just	“on”	and	“off”.	
(transistor)	

–  Need	a	signal	with	a	certain	duty	cycle	and	
frequency.	
•  That	is	%	of	/me	high.	

Example # 2: Compare 



•  Assume	1	MHz	CLK	
•  Design	“high-level”	circuit	to	

–  Generate	1.52	ms	pulse	
–  Every	6	ms	
–  Repeat	

•  How	would	we	generalize	this?	

Servo motor control: class exercise 



SmartFusion Timer System 



•  SysTick Timer 
–  ARM requires every Cortex-M3 to have this timer 
–  Essentially a 24-bit down-counter to generate system 

ticks 
–  Has its own interrupt 
–  Clocked by FCLK with optional programmable divider 

•  See Actel SmartFusion MSS User Guide for 
register definitions 

Timers on the SmartFusion 



h_p://www.actel.com/documents/SmartFusion_MSS_UG.pdf	

Timers on the SmartFusion 



Timers on the SmartFusion 



•  System	/mer	
–  “The	System	Timer	consists	of	two	programmable		32-bit	

decremen/ng		counters	that	generate	interrupts	to	the	ARM®	
Cortex™-M3	and	FPGA	fabric.	Each		counter	has	two	possible	
modes	of	opera/on:	Periodic	mode	or	One-Shot	mode.		The	
two	/mers	can	be	concatenated	to	create	a	64-bit	/mer	with	
Periodic	and	One-Shot	modes.	The	two	32-bit	/mers	are	
iden/cal”	

h_p://www.actel.com/documents/SmartFusion_MSS_UG.pdf	

Timers on the SmartFusion 



Anatomy of a timer system 
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module timer(clr, ena, clk, alrm); 
  input clr, ena, clk;
  output alrm;
  reg alrm;
  reg [3:0] count;

  always @(posedge clk) begin
    alrm <= 0;
    if (clr) count <= 0;
    else count <= count+1;
  end
endmodule

timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O 

R/W R/W R/W 

typedef struct timer {
  timer_handler_t handler;
  uint32_t time;
  uint8_t mode;
  timer_t* next_timer;
} timer_t;

timer_tick:
  ldr r0, count;
  add r0, r0, #1
  ... 



•  You	never	have	enough	/mers.	
–  Never.	

•  So	what	are	we	going	to	do	about	it?	
–  How	about	we	handle	in	sojware?	

Virtual Timers 



•  Simple	idea.	
–  Maybe	we	have	10	events	we	might	want	to	generate.	

•  Just	make	a	list	of	them	and	set	the	/mer	to	go	off	for	the	
first	one.			
–  Do	that	first	task,	change	the	/mer	to	interrupt	for	
the	next	task.	

Virtual Timers 



•  Only	works	for	“compare”	/mer	uses.	
•  Will	result	in	slower	ISR	response	/me	

–  May	not	care,	could	just	schedule	sooner…	

Problems? 



•  Shared	user-space/ISR	data	structure.	
–  Inser/on	happens	at	least	some	of	the	/me	in	user	
code.	

–  Dele/on	happens	in	ISR.	
• We	need	cri/cal	sec/on	(disable	interrupt)	

•  How	do	we	deal	with	our	modulo	counter?	
–  That	is,	the	/mer	wraps	around.	
–  Why	is	that	an	issue?	

•  What	func/onality	would	be	nice?	
–  Generally	one-shot	vs.	repea/ng	events	
–  Might	be	other	things	desired	though	

•  What	if	two	events	are	to	happen	at	the	same	
/me?	
–  Pick	an	order,	do	both…	

Implementation Issues 



•  What	data	structure?	
–  Data	needs	be	sorted	

•  Inser/ng	one	thing	at	a	/me	
–  We	always	pop	from	one	end	
–  But	we	add	in	sorted	order.	

Implementation Issues (continued) 



Data	structures	



Some loose ends…glitches and all that 



Full adder (from Wikipedia) 

•  Assume 
–  XOR delay = 0.2ns 
–  AND delay = 0.1ns  
–  OR delay = 0.1 ns 

•  What is the worst 
case propagation 
delay for this 
circuit?  

x 

y 

z 

Timing delays and propagation 



x 

y 

z 
Full adder (from Wikipedia) 

Consider the adjacent circuit diagram. Assuming the XOR gates have  
a delay of 0.2ns while AND and OR gates have a delay of 0.1ns, fill in 
the following chart.  

Only selected causality 
arrows shown… 

Glitches 



Glitching: a summary 

•  When input(s) change 
–  The output can be wrong for a time 
–  However, that time is bounded 

 

•  And more so, the output can change during this 
“computation time” even if the output ends up 
where it started! 



Effect of Glitches 

•  Think back to EECS 370. 
–  Why don’t glitches cause errors? 

–  The trick is that the inputs all change 
at the same time 

•  In this case, the ID/EX registers all 
change some time shortly after the 
rising edge of the clock. 

–  And we’ve chosen the clock period 
such that the next edge doesn’t 
happen until the combinational logic 
has stopped glitching. 

•  In fact, we use the worst-case 
combinational logic delay in the whole 
system when determining the clock 
period! 

 



So, how can glitches hurt us? 

•  There are a handful of places: 
–  Asynchronous resets 

•  If you’ve got a flip-flop that has an 
asynchronous reset (or “preset”) you need to 
be sure the input can’t glitch. 

–  That pretty much means you need a flip-
flop driving the input (which means you 
probably should have used a sync. reset!) 

–  Clocks 
•  If you are using combinational logic to drive a 

clock, you are likely going to get extra clock 
edges. 

Traditionally, CLR is used 
to indicate async reset.  “R” 
or “reset” for sync. reset. 

If clk is high and cond  
glitches, you get extra  
edges! 



Design rules 

1.  Thou shalt not use asynchronous 
resets 
 

2.  Thou shalt not drive a clock with 
anything other than a clock or 
directly off of a flip-flop’s output 

X 
X 



Really?  Seriously? 

•  People do use asynchronous resets and clock gating! 

–  Yep.  And people use goto in C programs. 
•  Sometimes they are the right thing. 

–  But you have to think really hard about them to insure 
that they won’t cause you problems. 

–  Our “simple” bus used 
combinational logic for 
the clock 

•  Works because REQ goes 
low only after everything 
else has stopped switching 

–  So no glitch. 
•  Not fun to reason about… 

•  Avoid unless you must 
–  Then think really carefully. 



Setup and hold time 

•  The idea is simple. 
–  When the clock is changing 

if the data is also changing it 
is hard to tell what the data 
is.   

•  Hardware can’t always tell 
–  And you can get meta-stable behavior too (very 

unlikely but…) 
–  So we have a “guard band” around the clock rising time 

during which we don’t allow the data to change. 
•  See diagram.  We call the time before the clock-

edge “setup time” and the time after “hold time” 



Example: 

Fast and slow paths;  
impact of setup and hold time 



So what happens if we violate set-up or hold time? 

•  Often just get one of the two values. 
–  And that often is just fine. 

•  Consider getting a button press from the user. 
•  If the button gets pressed at the same time as the 

clock edge, we might see the button now or next 
clock. 

–  Either is generally fine when it comes to human 
input. 

–  But bad things could happen. 
•  The flip-flop’s output might not settle out to a “0” or 

a “1” 
–  That could cause later devices to mess up. 

•  More likely, if that input is going to two places, one 
might see a “0” the other a “1” 

•  Important: don’t feed an async input to multiple 
places! 



Example 

•  A common thing to do is reset a state machine 
using a button. 
–  User can “reset” the system. 

•  Because the button transition could violate set-
up or hold time, some state bits of the state 
machine might come out of reset at different 
times. 
–  And you quickly end up at a wrong or illegal state. 



So… 

•  Dealing with inputs not synchronized to our local clock 
is a problem. 
–  Likely to violate setup or hold time. 

•  That could lead to things breaking. 

•  So we need a clock synchronization circuit. 
–  First flip-flop might have problems. 
–  Second should be fine. 
–  Sometimes use a third if  

really paranoid 
•  Safety-critical system for example. 

Figure from http://www.eeweb.com/electronics-quiz/solving-metastability-design-issues, we use the same thing to deal with external inputs too!  



Design rules 

3.  Thou shalt use a clock 
synchronization circuit when 
changing clock domains or using 
unclocked inputs! 

➼
/* Synchonization of Asynchronous switch input */ 
 
always@(posedge clk) 
begin 
 sw0_pulse[0] <= sw_port[0]; 
 sw0_pulse[1] <= sw0_pulse[0]; 
 sw0_pulse[2] <= sw0_pulse[1]; 
end 
 always @(posedge clk) SSELr <= {SSELr[1:0], SSEL}; 
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Questions? 
 

Comments? 
 

Discussion? 


