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Announcements 

•  HW3 Posted on web (Due Next Wednesday) 

•  Project Meeting 
–  Monday 10/10 @ 6:30pm 
–  1003 EECS 

•  Project Description Posted on Website this 
afternoon 
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What happens when we return from an ISR? 
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•  Interrupt exiting process 
–  System restoration needed (different from branch) 
–  Special LR value could be stored (0xFFFFFFFx) 

–  Walkthrough a few examples, simplified system assumptions: 
–  5 Interrupt Levels (0-4) 
–  256 Priority Levels (0 Highest, 256 Lowest) 

–  First time presenting, so errors in the animation are unintentional 
but may be present (lets find out together) 
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Single Interrupt 
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Single Interrupt 
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Single Interrupt 
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Single Interrupt 
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Single Interrupt 
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Nested Interrupts 

–  When new exception occurs 
–  And CPU handling another exception of lower priority 

(incoming request is higher priority) 
–  New exception will interrupt the current ISR 
–  Will generate a new ISR stack on the stack 
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Nested Interrupt 
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Nested Interrupt 
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Nested Interrupt 
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Nested Interrupt 
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Nested Interrupt 
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Tail Chaining 

–  When new exception occurs 
–  But CPU handling another exception of same/higher 

priority (incoming request is lower priority) 
–  New exception will enter pending state 
–  But will be executed before register unstacking 
–  Saving unnecessary unstacking/stacking operations 
–  Can reenter hander in as little as 6 cycles  
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Tail-Chaining 
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Tail-Chaining 
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Tail-Chaining 
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Tail-Chaining 
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Late Arrival 

•  Late arrivals (ok, so this is actually on entry) 
–  When one exception occurs and stacking commences 
–  Then another exception occurs before stacking 

completes 
–  And second exception of higher preempt priority 

arrives 
–  The later exception will be processed first 
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Late Arrival 

22 

Program 
Stack 

Interrupt on 
Level 4 

Execution Time 

HW 
SW 

8 
10 
5 
3 
6 

0 
1 
2 
3 
4 

Priority Table 
1 1 0 0 0 
4 0 

Pending 

0 0 0 0 0 
4 0 

Active 

1 1 1 1 1 
4 0 

Enabled 

Program  
Stack 

256 

Interrupt on 
Level 3 

PC 
PSR 
LR 

R0-R3, R12 

Once stacking 
complete, find 

vector for highest 
priority pending 

Base Priority 



Late Arrival 
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Late Arrival 
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•  You	never	have	enough	-mers.	
–  Never.	

•  So	what	are	we	going	to	do	about	it?	
–  How	about	we	handle	in	so<ware?	

Virtual Timers 



•  Simple	idea.	
–  Maybe	we	have	10	events	we	might	want	to	generate.	

•  Just	make	a	list	of	them	and	set	the	-mer	to	go	off	for	the	
first	one.			
–  Do	that	first	task,	change	the	-mer	to	interrupt	for	
the	next	task.	

Virtual Timers 



•  Only	works	for	“compare”	-mer	uses.	
•  Will	result	in	slower	ISR	response	-me	

–  May	not	care,	could	just	schedule	sooner…	

Problems? 



•  Shared	user-space/ISR	data	structure.	
–  Inser-on	happens	at	least	some	of	the	-me	in	user	
code.	

–  Dele-on	happens	in	ISR.	
• We	need	cri-cal	sec-on	(disable	interrupt)	

•  How	do	we	deal	with	our	modulo	counter?	
–  That	is,	the	-mer	wraps	around.	
–  Why	is	that	an	issue?	

•  What	func-onality	would	be	nice?	
–  Generally	one-shot	vs.	repea-ng	events	
–  Might	be	other	things	desired	though	

•  What	if	two	events	are	to	happen	at	the	same	
-me?	
–  Pick	an	order,	do	both…	

Implementation Issues 



•  What	data	structure?	
–  Data	needs	be	sorted	

•  Inser-ng	one	thing	at	a	-me	
–  We	always	pop	from	one	end	
–  But	we	add	in	sorted	order.	

Implementation Issues (continued) 



Data	structures	



Some loose ends…glitches and all that 



Full adder (from Wikipedia) 

•  Assume 
–  XOR delay = 0.2ns 
–  AND delay = 0.1ns  
–  OR delay = 0.1 ns 

•  What is the worst 
case propagation 
delay for this 
circuit?  

x 

y 

z 

Timing delays and propagation 



x 

y 

z 
Full adder (from Wikipedia) 

Consider the adjacent circuit diagram. Assuming the XOR gates have  
a delay of 0.2ns while AND and OR gates have a delay of 0.1ns, fill in 
the following chart.  

Only selected causality 
arrows shown… 

Glitches 



Glitching: a summary 

•  When input(s) change 
–  The output can be wrong for a time 
–  However, that time is bounded 

 

•  And more so, the output can change during this 
“computation time” even if the output ends up 
where it started! 



Effect of Glitches 

•  Think back to EECS 370. 
–  Why don’t glitches cause errors? 

–  The trick is that the inputs all change 
at the same time 

•  In this case, the ID/EX registers all 
change some time shortly after the 
rising edge of the clock. 

–  And we’ve chosen the clock period 
such that the next edge doesn’t 
happen until the combinational logic 
has stopped glitching. 

•  In fact, we use the worst-case 
combinational logic delay in the whole 
system when determining the clock 
period! 

 



So, how can glitches hurt us? 

•  There are a handful of places: 
–  Asynchronous resets 

•  If you’ve got a flip-flop that has an 
asynchronous reset (or “preset”) you need to 
be sure the input can’t glitch. 

–  That pretty much means you need a flip-
flop driving the input (which means you 
probably should have used a sync. reset!) 

–  Clocks 
•  If you are using combinational logic to drive a 

clock, you are likely going to get extra clock 
edges. 

Traditionally, CLR is used 
to indicate async reset.  “R” 
or “reset” for sync. reset. 

If clk is high and cond  
glitches, you get extra  
edges! 



Design rules 

1.  Thou shalt not use asynchronous 
resets 
 

2.  Thou shalt not drive a clock with 
anything other than a clock or 
directly off of a flip-flop’s output 

X 
X 



Really?  Seriously? 

•  People do use asynchronous resets and clock gating! 

–  Yep.  And people use goto in C programs. 
•  Sometimes they are the right thing. 

–  But you have to think really hard about them to insure 
that they won’t cause you problems. 

–  Our “simple” bus used 
combinational logic for 
the clock 

•  Works because REQ goes 
low only after everything 
else has stopped switching 

–  So no glitch. 
•  Not fun to reason about… 

•  Avoid unless you must 
–  Then think really carefully. 



Setup and hold time 

•  The idea is simple. 
–  When the clock is changing 

if the data is also changing it 
is hard to tell what the data 
is.   

•  Hardware can’t always tell 
–  And you can get meta-stable behavior too (very 

unlikely but…) 
–  So we have a “guard band” around the clock rising time 

during which we don’t allow the data to change. 
•  See diagram.  We call the time before the clock-

edge “setup time” and the time after “hold time” 



Example: 

Fast and slow paths;  
impact of setup and hold time 



So what happens if we violate set-up or hold time? 

•  Often just get one of the two values. 
–  And that often is just fine. 

•  Consider getting a button press from the user. 
•  If the button gets pressed at the same time as the 

clock edge, we might see the button now or next 
clock. 

–  Either is generally fine when it comes to human 
input. 

–  But bad things could happen. 
•  The flip-flop’s output might not settle out to a “0” or 

a “1” 
–  That could cause later devices to mess up. 

•  More likely, if that input is going to two places, one 
might see a “0” the other a “1” 

•  Important: don’t feed an async input to multiple 
places! 



Example 

•  A common thing to do is reset a state machine 
using a button. 
–  User can “reset” the system. 

•  Because the button transition could violate set-
up or hold time, some state bits of the state 
machine might come out of reset at different 
times. 
–  And you quickly end up at a wrong or illegal state. 



So… 

•  Dealing with inputs not synchronized to our local clock 
is a problem. 
–  Likely to violate setup or hold time. 

•  That could lead to things breaking. 

•  So we need a clock synchronization circuit. 
–  First flip-flop might have problems. 
–  Second should be fine. 
–  Sometimes use a third if  

really paranoid 
•  Safety-critical system for example. 

Figure from http://www.eeweb.com/electronics-quiz/solving-metastability-design-issues, we use the same thing to deal with external inputs too!  



Design rules 

3.  Thou shalt use a clock 
synchronization circuit when 
changing clock domains or using 
unclocked inputs! 

➼
/* Synchonization of Asynchronous switch input */ 
 
always@(posedge clk) 
begin 
 sw0_pulse[0] <= sw_port[0]; 
 sw0_pulse[1] <= sw0_pulse[0]; 
 sw0_pulse[2] <= sw0_pulse[1]; 
end 
 always @(posedge clk) SSELr <= {SSELr[1:0], SSEL}; 
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Questions? 
 

Comments? 
 

Discussion? 


