
1

EECS 373
Design of Microprocessor-Based Systems

Ron Dreslinski
University of Michigan

Clocks, Counters, Timers, Capture, and Compare

Some slides by Mark Brehob, Prabal Dutta and Thomas Schmid

Announcements

•  HW3 Posted on web (Due Next Wednesday)

•  Project Meeting
–  Monday 10/10 @ 6:30pm
–  1003 EECS

•  Project Description Posted on Website this
afternoon

2

What happens when we return from an ISR?

3

•  Interrupt exiting process
–  System restoration needed (different from branch)
–  Special LR value could be stored (0xFFFFFFFx)

–  Walkthrough a few examples, simplified system assumptions:
–  5 Interrupt Levels (0-4)
–  256 Priority Levels (0 Highest, 256 Lowest)

–  First time presenting, so errors in the animation are unintentional
but may be present (lets find out together)

Single Interrupt

4

Program

Interrupt on
Level 4

Execution Time

HW
SW

0 0 0 0 0
4 0

Pending

0 0 0 0 0
4 0

Active

1 1 1 1 1
4 0

Enabled

Program
Stack 8

10
5
3
6

0
1
2
3
4

Priority Table

Base Priority
256

Single Interrupt

5

Program
Stack

Interrupt on
Level 4

Execution Time

HW
SW

PC
PSR
LR

R0-R3, R12

1 0 0 0 0
4 0

Pending

0 0 0 0 0
4 0

Active

1 1 1 1 1
4 0

Enabled

Program
Stack 8

10
5
3
6

0
1
2
3
4

Priority Table

6
Base Priority

Single Interrupt

6

Program ISR-LVL4
Stack

Interrupt on
Level 4

Execution Time

HW
SW

Program
Stack

PC
PSR
LR

R0-R3, R12

0 0 0 0 0
4 0

Pending

1 0 0 0 0
4 0

Active

1 1 1 1 1
4 0

Enabled

ISR-LVL4
Stack

8
10
5
3
6

0
1
2
3
4

Priority Table

6
Base Priority

Single Interrupt

7

Program ISR-LVL4
Stack

Interrupt on
Level 4 bx lr

Execution Time

HW
SW

PC
PSR
LR

R0-R3, R12

0 0 0 0 0
4 0

Pending

1 0 0 0 0
4 0

Active

1 1 1 1 1
4 0

Enabled

Program
Stack 8

10
5
3
6

0
1
2
3
4

Priority Table

6
Base Priority

Single Interrupt

8

Program ISR-LVL4
Stack Unstack

Interrupt on
Level 4 bx lr

Execution Time

HW
SW

0 0 0 0 0
4 0

Pending

0 0 0 0 0
4 0

Active

1 1 1 1 1
4 0

Enabled

Program
Stack 8

10
5
3
6

0
1
2
3
4

Priority Table

6
Base Priority

Single Interrupt

9

Program ISR-LVL4
Stack Unstack

Program

Interrupt on
Level 4 bx lr

Execution Time

HW
SW

8
10
5
3
6

0
1
2
3
4

Priority Table
0 0 0 0 0
4 0

Pending

0 0 0 0 0
4 0

Active

1 1 1 1 1
4 0

Enabled

Program
Stack

256
Base Priority

Nested Interrupts

–  When new exception occurs
–  And CPU handling another exception of lower priority

(incoming request is higher priority)
–  New exception will interrupt the current ISR
–  Will generate a new ISR stack on the stack

10

Nested Interrupt

11

Program ISR-LVL4
Stack

Interrupt on
Level 4

Execution Time

HW
SW

8
10
5
3
6

0
1
2
3
4

Priority Table
0 0 0 0 0
4 0

Pending

1 0 0 0 0
4 0

Active

1 1 1 1 1
4 0

Enabled

Program
Stack

6

Interrupt on
Level 3

PC
PSR
LR

R0-R3, R12
ISR-LVL4

Stack

Base Priority

Nested Interrupt

12

Program ISR-LVL4
Stack

Interrupt on
Level 4

Execution Time

HW
SW

8
10
5
3
6

0
1
2
3
4

Priority Table
0 1 0 0 0
4 0

Pending

1 0 0 0 0
4 0

Active

1 1 1 1 1
4 0

Enabled

Program
Stack

6

Interrupt on
Level 3

Stack

PC
PSR
LR

R0-R3, R12
ISR-LVL4

Stack

PC
SP
LR

R0-R4, R12

Base Priority

Nested Interrupt

13

Program ISR-LVL4
Stack

Interrupt on
Level 4

Execution Time

HW
SW

8
10
5
3
6

0
1
2
3
4

Priority Table
0 0 0 0 0
4 0

Pending

1 1 0 0 0
4 0

Active

1 1 1 1 1
4 0

Enabled

Program
Stack

3

Interrupt on
Level 3

ISR-LVL3
Stack

PC
PSR
LR

R0-R3, R12
ISR-LVL4

Stack

PC
PSR
LR

R0-R3, R12
ISR-LVL3

Stack

Base Priority

Nested Interrupt

14

Program ISR-LVL4
Stack Unstack

Interrupt on
Level 4 bx lr

Execution Time

HW
SW

8
10
5
3
6

0
1
2
3
4

Priority Table
0 0 0 0 0
4 0

Pending

1 0 0 0 0
4 0

Active

1 1 1 1 1
4 0

Enabled

Program
Stack

6

Interrupt on
Level 3

ISR-LVL3
Stack

PC
PSR
LR

R0-R3, R12
ISR-LVL4

Stack

Base Priority

Nested Interrupt

15

Program ISR-LVL4
Stack Unstack

Interrupt on
Level 4 bx lr

Execution Time

HW
SW

8
10
5
3
6

0
1
2
3
4

Priority Table
0 0 0 0 0
4 0

Pending

0 0 0 0 0
4 0

Active

1 1 1 1 1
4 0

Enabled

Program
Stack

256

Interrupt on
Level 3

ISR-LVL3
Stack

ISR-LVL4
Unstack

bx lr

Base Priority

Tail Chaining

–  When new exception occurs
–  But CPU handling another exception of same/higher

priority (incoming request is lower priority)
–  New exception will enter pending state
–  But will be executed before register unstacking
–  Saving unnecessary unstacking/stacking operations
–  Can reenter hander in as little as 6 cycles

16

Tail-Chaining

17

Program ISR-LVL4
Stack

Interrupt on
Level 4

Execution Time

HW
SW

8
10
5
3
6

0
1
2
3
4

Priority Table
0 0 0 1 0
4 0

Pending

1 0 0 0 0
4 0

Active

1 1 1 1 1
4 0

Enabled

Program
Stack

6

Interrupt on
Level 1

PC
PSR
LR

R0-R3, R12
ISR-LVL4

Stack

Base Priority

Tail-Chaining

18

Program ISR-LVL4
Stack

Interrupt on
Level 4 bx lr

Execution Time

HW
SW

8
10
5
3
6

0
1
2
3
4

Priority Table
0 0 0 1 0
4 0

Pending

0 0 0 0 0
4 0

Active

1 1 1 1 1
4 0

Enabled

Program
Stack

6

Interrupt on
Level 1

PC
PSR
LR

R0-R3, R12

Don’t Unstack

Base Priority

Tail-Chaining

19

Program ISR-LVL4
Stack

Interrupt on
Level 4 bx lr

Execution Time

HW
SW

8
10
5
3
6

0
1
2
3
4

Priority Table
0 0 0 0 0
4 0

Pending

0 0 0 1 0
4 0

Active

1 1 1 1 1
4 0

Enabled

Program
Stack

10

Interrupt on
Level 1

ISR-LVL1

PC
PSR
LR

R0-R3, R12
ISR-LVL1

Stack

Base Priority

Tail-Chaining

20

Program ISR-LVL4
Stack

Program

Interrupt on
Level 4 bx lr

Execution Time

HW
SW

8
10
5
3
6

0
1
2
3
4

Priority Table
0 0 0 0 0
4 0

Pending

0 0 0 0 0
4 0

Active

1 1 1 1 1
4 0

Enabled

Program
Stack

256

Interrupt on
Level 1

ISR-LVL1
Unstack

bx lr

Base Priority

Late Arrival

•  Late arrivals (ok, so this is actually on entry)
–  When one exception occurs and stacking commences
–  Then another exception occurs before stacking

completes
–  And second exception of higher preempt priority

arrives
–  The later exception will be processed first

21

Late Arrival

22

Program
Stack

Interrupt on
Level 4

Execution Time

HW
SW

8
10
5
3
6

0
1
2
3
4

Priority Table
1 1 0 0 0
4 0

Pending

0 0 0 0 0
4 0

Active

1 1 1 1 1
4 0

Enabled

Program
Stack

256

Interrupt on
Level 3

PC
PSR
LR

R0-R3, R12

Once stacking
complete, find

vector for highest
priority pending

Base Priority

Late Arrival

23

Program
Stack

Interrupt on
Level 4 bx lr

Execution Time

HW
SW

8
10
5
3
6

0
1
2
3
4

Priority Table
1 0 0 0 0
4 0

Pending

0 1 0 0 0
4 0

Active

1 1 1 1 1
4 0

Enabled

Program
Stack

3

Interrupt on
Level 3

ISR-LVL3

PC
PSR
LR

R0-R3, R12
ISR-LVL3

Stack

Base Priority

Late Arrival

24

Program ISR-LVL4
Stack

Program

Interrupt on
Level 4 bx lr

Execution Time

HW
SW

8
10
5
3
6

0
1
2
3
4

Priority Table
0 0 0 0 0
4 0

Pending

0 0 0 0 0
4 0

Active

1 1 1 1 1
4 0

Enabled

Program
Stack

256

Interrupt on
Level 3

ISR-LVL3
Unstack

bx lr

Tail Chaining used
to service lower
priority request

Base Priority

•  You	never	have	enough	-mers.	
–  Never.	

•  So	what	are	we	going	to	do	about	it?	
–  How	about	we	handle	in	so<ware?	

Virtual Timers

•  Simple	idea.	
–  Maybe	we	have	10	events	we	might	want	to	generate.	

•  Just	make	a	list	of	them	and	set	the	-mer	to	go	off	for	the	
first	one.			
–  Do	that	first	task,	change	the	-mer	to	interrupt	for	
the	next	task.	

Virtual Timers

•  Only	works	for	“compare”	-mer	uses.	
•  Will	result	in	slower	ISR	response	-me	

–  May	not	care,	could	just	schedule	sooner…	

Problems?

•  Shared	user-space/ISR	data	structure.	
–  Inser-on	happens	at	least	some	of	the	-me	in	user	
code.	

–  Dele-on	happens	in	ISR.	
• We	need	cri-cal	sec-on	(disable	interrupt)	

•  How	do	we	deal	with	our	modulo	counter?	
–  That	is,	the	-mer	wraps	around.	
–  Why	is	that	an	issue?	

•  What	func-onality	would	be	nice?	
–  Generally	one-shot	vs.	repea-ng	events	
–  Might	be	other	things	desired	though	

•  What	if	two	events	are	to	happen	at	the	same	
-me?	
–  Pick	an	order,	do	both…	

Implementation Issues

•  What	data	structure?	
–  Data	needs	be	sorted	

•  Inser-ng	one	thing	at	a	-me	
–  We	always	pop	from	one	end	
–  But	we	add	in	sorted	order.	

Implementation Issues (continued)

Data	structures	

Some loose ends…glitches and all that

Full adder (from Wikipedia)

•  Assume
–  XOR delay = 0.2ns
–  AND delay = 0.1ns
–  OR delay = 0.1 ns

•  What is the worst
case propagation
delay for this
circuit?

x

y

z

Timing delays and propagation

x

y

z
Full adder (from Wikipedia)

Consider the adjacent circuit diagram. Assuming the XOR gates have
a delay of 0.2ns while AND and OR gates have a delay of 0.1ns, fill in
the following chart.

Only selected causality
arrows shown…

Glitches

Glitching: a summary

•  When input(s) change
–  The output can be wrong for a time
–  However, that time is bounded

•  And more so, the output can change during this
“computation time” even if the output ends up
where it started!

Effect of Glitches

•  Think back to EECS 370.
–  Why don’t glitches cause errors?

–  The trick is that the inputs all change
at the same time

•  In this case, the ID/EX registers all
change some time shortly after the
rising edge of the clock.

–  And we’ve chosen the clock period
such that the next edge doesn’t
happen until the combinational logic
has stopped glitching.

•  In fact, we use the worst-case
combinational logic delay in the whole
system when determining the clock
period!

So, how can glitches hurt us?

•  There are a handful of places:
–  Asynchronous resets

•  If you’ve got a flip-flop that has an
asynchronous reset (or “preset”) you need to
be sure the input can’t glitch.

–  That pretty much means you need a flip-
flop driving the input (which means you
probably should have used a sync. reset!)

–  Clocks
•  If you are using combinational logic to drive a

clock, you are likely going to get extra clock
edges.

Traditionally, CLR is used
to indicate async reset. “R”
or “reset” for sync. reset.

If clk is high and cond
glitches, you get extra
edges!

Design rules

1.  Thou shalt not use asynchronous
resets

2.  Thou shalt not drive a clock with
anything other than a clock or
directly off of a flip-flop’s output

X
X

Really? Seriously?

•  People do use asynchronous resets and clock gating!

–  Yep. And people use goto in C programs.
•  Sometimes they are the right thing.

–  But you have to think really hard about them to insure
that they won’t cause you problems.

–  Our “simple” bus used
combinational logic for
the clock

•  Works because REQ goes
low only after everything
else has stopped switching

–  So no glitch.
•  Not fun to reason about…

•  Avoid unless you must
–  Then think really carefully.

Setup and hold time

•  The idea is simple.
–  When the clock is changing

if the data is also changing it
is hard to tell what the data
is.

•  Hardware can’t always tell
–  And you can get meta-stable behavior too (very

unlikely but…)
–  So we have a “guard band” around the clock rising time

during which we don’t allow the data to change.
•  See diagram. We call the time before the clock-

edge “setup time” and the time after “hold time”

Example:

Fast and slow paths;
impact of setup and hold time

So what happens if we violate set-up or hold time?

•  Often just get one of the two values.
–  And that often is just fine.

•  Consider getting a button press from the user.
•  If the button gets pressed at the same time as the

clock edge, we might see the button now or next
clock.

–  Either is generally fine when it comes to human
input.

–  But bad things could happen.
•  The flip-flop’s output might not settle out to a “0” or

a “1”
–  That could cause later devices to mess up.

•  More likely, if that input is going to two places, one
might see a “0” the other a “1”

•  Important: don’t feed an async input to multiple
places!

Example

•  A common thing to do is reset a state machine
using a button.
–  User can “reset” the system.

•  Because the button transition could violate set-
up or hold time, some state bits of the state
machine might come out of reset at different
times.
–  And you quickly end up at a wrong or illegal state.

So…

•  Dealing with inputs not synchronized to our local clock
is a problem.
–  Likely to violate setup or hold time.

•  That could lead to things breaking.

•  So we need a clock synchronization circuit.
–  First flip-flop might have problems.
–  Second should be fine.
–  Sometimes use a third if

really paranoid
•  Safety-critical system for example.

Figure from http://www.eeweb.com/electronics-quiz/solving-metastability-design-issues, we use the same thing to deal with external inputs too!

Design rules

3.  Thou shalt use a clock
synchronization circuit when
changing clock domains or using
unclocked inputs!

➼
/* Synchonization of Asynchronous switch input */

always@(posedge clk)
begin
 sw0_pulse[0] <= sw_port[0];
 sw0_pulse[1] <= sw0_pulse[0];
 sw0_pulse[2] <= sw0_pulse[1];
end
 always @(posedge clk) SSELr <= {SSELr[1:0], SSEL};

45

Questions?

Comments?

Discussion?

