
1

EECS 373
Design of Microprocessor-Based Systems

Ron Dreslinski
University of Michigan

Serial buses, digital design

Material taken from Brehob, Dutta, Le,
Ramadas, Tikhonov & Mahal

Timer

2

Hardware Timer

Count:

Interrupt

-1

ISR

//Do Something

Program

//Setup Timer

Virtual Timer

3

Hardware Timer

Count:

Interrupt

-1

Virtual ISR

//Figure out source
bl
bl
bl
bl
//Insert new event?
//Set new time

Program 1
//Setup Timer @3
//Setup Timer @5

Program 2

//Setup Timer @D2

Program 3

//Setup Timer @D7

Program 4

//Setup Timer @4

Program 1-Handler
//Do Seomthing

Program 2-Handler
//Do Something

Program 3-Handler
//Do Something
 Program 4 -Hanlder
//Do Something

Virtual Timer Code

//Update Event Queue
//Adjust Timer if needed

Virtual Event Queue

Event Queue

4

Program 1
//Setup Timer @3
//Setup Timer @5

Program 2

//Setup Timer @D2

Program 3

//Setup Timer @D7

Program 4

//Setup Timer @4

Head Ptr

Null
Hardware Timer

Count:

-1

Event Queue

5

Time:
Delta:
Mode:

3
-1

One

Program 1
//Setup Timer @3
//Setup Timer @5

Program 2

//Setup Timer @D2

Program 3

//Setup Timer @D7

Program 4

//Setup Timer @4

Head Ptr
Hardware Timer

Count:

3

H
dl

r
Pt

r

Event Queue

6

Time:
Delta:
Mode:

3
-1

One

Program 1
//Setup Timer @3
//Setup Timer @5

Program 2

//Setup Timer @D2

Program 3

//Setup Timer @D7

Program 4

//Setup Timer @4

Head Ptr
Hardware Timer

Count:

3

Time:
Delta:
Mode:

5
-1

One

H
dl

r
Pt

r
H

dl
r

Pt
r

Event Queue

7

Time:
Delta:
Mode:

3
-1

One

Program 1
//Setup Timer @3
//Setup Timer @5

Program 2

//Setup Timer @D2

Program 3

//Setup Timer @D7

Program 4

//Setup Timer @4

Head Ptr
Hardware Timer

Count:

3

Time:
Delta:
Mode:

5
-1

One

Time:
Delta:
Mode:

2
2

Delta

H
dl

r
Pt

r
H

dl
r

Pt
r

H
dl

r
Pt

r

Event Queue

8

Time:
Delta:
Mode:

2
2

Delta

Program 1
//Setup Timer @3
//Setup Timer @5

Program 2

//Setup Timer @D2

Program 3

//Setup Timer @D7

Program 4

//Setup Timer @4

Head Ptr
Hardware Timer

Count:

2

Time:
Delta:
Mode:

3
-1

One

Time:
Delta:
Mode:

5
-1

One

H
dl

r
Pt

r
H

dl
r

Pt
r

H
dl

r
Pt

r

Event Queue

9

Time:
Delta:
Mode:

2
2

Delta

Program 1
//Setup Timer @3
//Setup Timer @5

Program 2

//Setup Timer @D2

Program 3

//Setup Timer @D7

Program 4

//Setup Timer @4

Head Ptr
Hardware Timer

Count:

2

Time:
Delta:
Mode:

3
-1

One

Time:
Delta:
Mode:

5
-1

One

Time:
Delta:
Mode:

7
7

Delta

H
dl

r
Pt

r
H

dl
r

Pt
r

H
dl

r
Pt

r

H
dl

r
Pt

r

Event Queue

10

Time:
Delta:
Mode:

2
2

Delta

Program 1
//Setup Timer @3
//Setup Timer @5

Program 2

//Setup Timer @D2

Program 3

//Setup Timer @D7

Program 4

//Setup Timer @4

Head Ptr
Hardware Timer

Count:

2

Time:
Delta:
Mode:

3
-1

One

Time:
Delta:
Mode:

5
-1

One

Time:
Delta:
Mode:

7
7

Delta

Time:
Delta:
Mode:

4
-1

One

H
dl

r
Pt

r
H

dl
r

Pt
r

H
dl

r
Pt

r

H
dl

r
Pt

r

H
dl

r
Pt

r

Event Queue

11

Time:
Delta:
Mode:

2
2

Delta

Program 1
//Setup Timer @3
//Setup Timer @5

Program 2

//Setup Timer @D2

Program 3

//Setup Timer @D7

Program 4

//Setup Timer @4

Head Ptr
Hardware Timer

Count:

0

Time:
Delta:
Mode:

3
-1

One

Time:
Delta:
Mode:

5
-1

One

Time:
Delta:
Mode:

7
7

Delta

Time:
Delta:
Mode:

4
-1

One

H
dl

r
Pt

r
H

dl
r

Pt
r

H
dl

r
Pt

r

H
dl

r
Pt

r

H
dl

r
Pt

r

Event Queue

12

Time:
Delta:
Mode:

2
2

Delta

Program 1
//Setup Timer @3
//Setup Timer @5

Program 2

//Setup Timer @D2

Program 3

//Setup Timer @D7

Program 4

//Setup Timer @4

Head Ptr
Hardware Timer

Count:

0

Time:
Delta:
Mode:

3
-1

One

Time:
Delta:
Mode:

5
-1

One

Time:
Delta:
Mode:

7
7

Delta

Time:
Delta:
Mode:

4
-1

One

H
dl

r
Pt

r
H

dl
r

Pt
r

H
dl

r
Pt

r

H
dl

r
Pt

r

H
dl

r
Pt

r

Virtual ISR
//Figure out source
//Remove head
//Insert new event?
//Set new time

Event Queue

13

Time:
Delta:
Mode:

2
2

Delta
Program 1
//Setup Timer @3
//Setup Timer @5

Program 2

//Setup Timer @D2

Program 3

//Setup Timer @D7

Program 4

//Setup Timer @4

Head Ptr
Hardware Timer

Count:

0

Time:
Delta:
Mode:

1
-1

One

Time:
Delta:
Mode:

3
-1

One

Time:
Delta:
Mode:

5
7

Delta

Time:
Delta:
Mode:

2
-1

One

H
dl

r
Pt

r

H
dl

r
Pt

r
H

dl
r

Pt
r

H
dl

r
Pt

r

H
dl

r
Pt

r

Virtual ISR
//Figure out source
//Remove head
//Insert new event?
//Set new time

Event Queue

14

Time:
Delta:
Mode:

2
2

Delta

Program 1
//Setup Timer @3
//Setup Timer @5

Program 2

//Setup Timer @D2

Program 3

//Setup Timer @D7

Program 4

//Setup Timer @4

Head Ptr
Hardware Timer

Count:

0
Time:
Delta:
Mode:

1
-1

One

Time:
Delta:
Mode:

3
-1

One

Time:
Delta:
Mode:

5
7

Delta

Time:
Delta:
Mode:

2
-1

One

H
dl

r
Pt

r
H

dl
r

Pt
r

H
dl

r
Pt

r

H
dl

r
Pt

r

H
dl

r
Pt

r

Virtual ISR
//Figure out source
//Remove head
//Insert new event?
//Set new time

Event Queue

15

Time:
Delta:
Mode:

2
2

Delta

Program 1
//Setup Timer @3
//Setup Timer @5

Program 2

//Setup Timer @D2

Program 3

//Setup Timer @D7

Program 4

//Setup Timer @4

Head Ptr
Hardware Timer

Count:

1
Time:
Delta:
Mode:

1
-1

One

Time:
Delta:
Mode:

3
-1

One

Time:
Delta:
Mode:

5
7

Delta

Time:
Delta:
Mode:

2
-1

One

H
dl

r
Pt

r
H

dl
r

Pt
r

H
dl

r
Pt

r

H
dl

r
Pt

r

H
dl

r
Pt

r

Virtual ISR
//Figure out source
//Remove head
//Insert new event?
//Set new time

Event Queue - Caveats

16

Time:
Delta:
Mode:

2
2

Delta

Head Ptr

Time:
Delta:
Mode:

1
-1

One

Time:
Delta:
Mode:

3
-1

One

Time:
Delta:
Mode:

5
7

Delta

Time:
Delta:
Mode:

2
-1

One

H
dl

r
Pt

r
H

dl
r

Pt
r

H
dl

r
Pt

r

H
dl

r
Pt

r

H
dl

r
Pt

r

Handler may need
to loop to handle
multiple events at
same time

No new event
added for one-shot

17

Agenda

•  Serial Buses
–  Introduction
–  UART
–  SPI
–  I2C

•  Glitches
–  Asynchronous resets and glitches
–  Design rules

•  Set-up and hold time.
–  Review
–  Dealing with external inputs

•  Design rules

Serial interfaces

18

Timers

CPU

Software

Hardware

Internal

External

System Buses
AHB/APB

ldr (read)
str (write)ISA

EECS 370

USART

DAC/ADC

Internal &
External
Memory

GPIO/INT

C
Assembly

Machine Code

Interrupts

interrupts

SVC#

fault

traps &
exceptions

INT#

External memory attaches to the processor
via the external memory controller and bus

19

Atmel SAM3U

UART

•  Universal Asynchronous Receiver/Transmitter
–  a type of "asynchronous receiver/transmitter", a piece of

computer hardware that translates data between parallel
and serial forms.

–  UARTs are commonly used in conjunction with
communication standards such as EIA, RS-232, RS-422 or
RS-485.

–  The universal designation indicates that the data format and
transmission speeds are configurable and that the actual
electric signaling levels and methods (such as differential
signaling etc.) typically are handled by a special driver
circuit external to the UART.

20 Most of the UART stuff (including images) Taken from Wikipedia!

Fun with buses

•  A multidrop bus (MDB) is a computer bus in
which all components are connected to the same
set of electrical wires. (from Wikipedia)

–  In the general case, a bus may have more than one
device capable of driving it.

•  That is, it may be a “multi-master” bus as discussed
earlier.

How can we handle multiple (potential) bus drivers?
(1/3)

•  Tri-state devices, just have
one device drive at a time.
Everyone can read though
–  Pros:

•  Very common, fairly fast, pin-
efficient.

–  Cons:
•  Tri-state devices can be slow.

–  Especially drive-to-tristate?

•  Need to be sure two folks not driving at the same time
–  Let out the magic smoke.

–  Most common solution (at least historically)
•  Ethernet, PCI, etc.

How can we handle multiple (potential) bus drivers?
(2/3)

•  MUX
–  Just have each device generate its data, and have a

MUX select.
•  That’s a LOT of pins.

–  Consider a 32-bit bus with 6 potential drivers.
»  Draw the figure.
»  How many pins needed for the MUX?

–  Not generally realistic for an “on-PCB” design as we’ll
need an extra device (or a lot of pins on one device)

•  But reasonable on-chip
–  In fact AHB, APB do this.

How can we handle multiple (potential) bus drivers?
(3/3)

•  “pull-up” aka “open
collector” aka “wired OR”
–  Wire is pulled high by a

resistor
–  If any device pulls the

wire low, it goes low.

•  Pros:
–  If two devices both drive

the bus, it still works!

•  Cons:
–  Rise-time is very slow.
–  Constant power drain.

•  Used in I2C, CAN

25

Agenda

•  Serial Buses
–  Introduction
–  UART
–  SPI
–  I2C

•  Glitches
–  Asynchronous resets and glitches
–  Design rules

•  Set-up and hold time.
–  Review
–  Dealing with external inputs

•  Design rules

UART

•  Universal Asynchronous Receiver/Transmitter
•  Hardware that translates between parallel and serial forms
•  Commonly used in conjunction with communication

standards such as EIA, RS-232, RS-422 or RS-485
•  The universal designation indicates that the data format

and transmission speeds are configurable and that the
actual electric signaling levels and methods (such as
differential signaling etc.) typically are handled by a
special driver circuit external to the UART.

26 Most of the UART stuff (including images) Taken from Wikipedia!

Protocol

•  Each character is sent as
–  a logic low start bit
–  a configurable number of data bits (usually 7 or 8,

sometimes 5)
–  an optional parity bit
–  one or more logic high stop bits.
–  with a particular bit timing (“baud” or “baudrate”)

•  Examples
–  “9600-N-8-1” à <baudrate><parity><databits><stopbits>
–  “9600-8-N-1” à <baudrate><databits><parity><stopbits>

27

Variations and fun times

•  UART is actually a generic term that includes a
large number of different devices/standards.
–  RS-232 is a standard that specifies

•  “electrical characteristics and timing of signals, the
meaning of signals, and the physical size and pin
out of connectors.

28

Signals (only most common)

•  The RXD signal of a UART is the signal receiving the data. This will
be an input and is usually connected to the TXD line of the
downstream device.

•  The TXD signal of a UART is the signal transmitting the data. This
will be an output and is usually connected to the RXD line of the
downstream device.

•  The RTS# (Ready to Send) signal of a UART is used to indicate to
the downstream device that the device is ready to receive data.
This will be an output and is usually connected to the CTS# line of
the downstream device.

•  The CTS# (Clear to Send) signal of a UART is used by the
downstream device to identify that it is OK to transmit data to
the upsteam device. This will be an input and is usually connected
to the RTS# line of the upstream device.

29

30

DB9 stuff

•  DTE vs DCE
•  Pinout of a DCE?
•  Common ground?
•  Noise effects?

Wiring a DTE device to a DCE device for communication is easy.
The pins are a one-to-one connection, meaning all wires go from pin x to pin x.
A straight through cable is commonly used for this application.
In contrast, wiring two DTE devices together requires crossing the transmit and receive wires.
This cable is known as a null modem or crossover cable.

31

RS-232 transmission example

32

Agenda

•  Serial Buses
–  Introduction
–  UART
–  SPI
–  I2C

•  Glitches
–  Asynchronous resets and glitches
–  Design rules

•  Set-up and hold time.
–  Review
–  Dealing with external inputs

•  Design rules

Introduction

n  What is it?
n  Basic Serial Peripheral Interface (SPI)‏
n  Capabilities
n  Protocol
n  Pro / Cons and Competitor
n  Uses
n  Conclusion

Serial Peripheral Interface
http://upload.wikimedia.org/wikipedia/commons/thumb/e/ed/
SPI_single_slave.svg/350px-SPI_single_slave.svg.png

What is SPI?

n  Serial Bus protocol
n  Fast, Easy to use, Simple
n  Everyone supports it

SPI Basics

n  A communication protocol using 4 wires
n  Also known as a 4 wire bus

n  Used to communicate across small
distances

n  Multiple Slaves, Single Master
n  Synchronized

Capabilities of SPI

n  Always Full Duplex
n  Communicating in two directions at the

same time
n  Transmission need not be meaningful

n  Multiple Mbps transmission speed
n  Transfers data in 4 to 16 bit characters
n  Multiple slaves

n  Daisy-chaining possible

Protocol

n  Wires:
n  Master Out Slave In (MOSI)‏
n  Master In Slave Out (MISO)‏
n  System Clock (SCLK)‏
n  Slave Select 1…N

n  Master Set Slave Select low
n  Master Generates Clock
n  Shift registers shift in and out data

Wires in Detail

n  MOSI – Carries data out of Master to
Slave

n  MISO – Carries data from Slave to
Master
n  Both signals happen for every transmission

n  SS_BAR – Unique line to select a slave
n  SCLK – Master produced clock to

synchronize data transfer

Shifting Protocol

Master shifts out data to Slave, and shift in data from Slave
http://upload.wikimedia.org/wikipedia/commons/thumb/b/bb/SPI_8-bit_circular_transfer.svg/400px-SPI_8-bit_circular_transfer.svg.png

Diagram

Master and multiple independent
slaves
http://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/
SPI_three_slaves.svg/350px-SPI_three_slaves.svg.png

Master and multiple daisy-
chained slaves
http://www.maxim-ic.com/appnotes.cfm/an_pk/3947

Some wires have been renamed

Clock Phase (Advanced)‏
n  Two phases and two polarities of clock
n  Four modes
n  Master and selected slave must be in

same mode
n  Master must change polarity and phase

to communicate with slaves of different
numbers

Timing Diagram

Timing Diagram – Showing Clock polarities and phases
http://www.maxim-ic.com.cn/images/appnotes/3078/3078Fig02.gif

Pros and Cons
Pros:
n  Fast and easy

n  Fast for point-to-point connections
n  Easily allows streaming/Constant data inflow
n  No addressing/Simple to implement

n  Everyone supports it
Cons:
n  SS makes multiple slaves very complicated
n  No acknowledgement ability
n  No inherent arbitration
n  No flow control

Uses

n  Some Serial Encoders/Decoders,
Converters, Serial LCDs, Sensors, etc.

n  Pre-SPI serial devices

Summary

n  SPI – 4 wire serial bus protocol
n  MOSI MISO SS SCLK wires

n  Full duplex
n  Multiple slaves, One master
n  Best for point-to-point streaming data
n  Easily Supported

46

Agenda

•  Serial Buses
–  Introduction
–  UART
–  SPI
–  I2C

•  Glitches
–  Asynchronous resets and glitches
–  Design rules

•  Set-up and hold time.
–  Review
–  Dealing with external inputs

•  Design rules

48

49

50

51

52

53

54

55

56

57

58

Agenda

•  Serial Buses
•  Glitches

–  Asynchronous resets and glitches
–  Design rules

•  Set-up and hold time.
–  Review
–  Dealing with external inputs

•  Design rules

Glitches

•  Combinational logic can glitch
–  What is a glitch?
–  How do we normally deal with it?
–  Where can it hurt us?

Full adder (from Wikipedia)

Timing

•  Assuming the
XOR gates have
a delay of 0.2ns
while AND and
OR gates have a
delay of 0.1ns
–  What is the

worst case
propagation
delay for this
circuit?

x

y

z

x

y

z
Full adder (from Wikipedia)

Consider the adjacent circuit diagram. Assuming the XOR gates have
a delay of 0.2ns while AND and OR gates have a delay of 0.1ns, fill in
the following chart.

Only selected causality
arrows shown…

Glitches

Glitching: a summary

•  When input(s) change, the output can be wrong
for a time. However, that time is bound.

–  And more so, the output can change during this

“computation time” even if the output ends up where
it started!

Effect of Glitches

•  Think back to EECS 370.
–  Why don’t glitches cause errors?

–  The trick is that the inputs all change
at the same time

•  In this case, the ID/EX registers all
change some time shortly after the
rising edge of the clock.

–  And we’ve chosen the clock period
such that the next edge doesn’t
happen until the combinational logic
has stopped glitching.

•  In fact, we use the worst-case
combinational logic delay in the whole
system when determining the clock
period!

So, how can glitches hurt us?

•  There are a handful of places:
–  Asynchronous resets

•  If you’ve got a flip-flop that has an
asynchronous reset (or “preset”) you need to
be sure the input can’t glitch.

–  That pretty much means you need a flip-
flop driving the input (which means you
probably should have used a sync. reset!)

–  Clocks
•  If you are using combinational logic to drive a

clock, you are likely going to get extra clock
edges.

Traditionally, CLR is used
to indicate async reset. “R”
or “reset” for sync. reset.

If clk is high and cond
glitches, you get extra
edges!

Design rules

1.  Thou shall Not use asynchronous
resets

2.  Thou shall not drive a clock with
anything other than a clock or
directly off of a flip-flop’s output

X
X

Really?

•  I mean people use asynchronous resets and clock gating!

–  Yep. And people use goto in C programs.
•  Sometimes they are the right thing.

–  But you have to think really hard about them to insure
that they won’t cause you problems.

–  Our “simple” bus used
combinational logic for
the clock

•  Works because REQ goes
low only after everything
else has stopped switching

–  So no glitch.
•  Not fun to reason about…

•  Avoid unless you must
–  Then think really carefully.

68

Agenda

•  Serial Buses,
•  Glitches

–  Asynchronous resets and glitches
–  Design rules

•  Set-up and hold time.
–  Review
–  Dealing with external inputs

•  Design rules

Setup and hold time

•  The idea is simple.
–  When the clock is changing

if the data is also changing it
is hard to tell what the data
is.

•  Hardware can’t always tell
–  And you can get meta-stable behavior too (very

unlikely but…)
–  So we have a “guard band” around the clock rising time

during which we don’t allow the data to change.
•  See diagram. We call the time before the clock-

edge “setup time” and the time after “hold time”

Example:

Fast and slow paths;
impact of setup and hold time

So what happens if we violate set-up or hold time?

•  Often just get one of the two values.
–  And that often is just fine.

•  Consider getting a button press from the user.
•  If the button gets pressed at the same time as the

clock edge, we might see the button now or next
clock.

–  Either is generally fine when it comes to human
input.

–  But bad things could happen.
•  The flip-flop’s output might not settle out to a “0”

or a “1”
–  That could cause latter devices to mess up.

•  More likely, if that input is going to two places, one
might see a “0” the other a “1”.

Example

•  A common thing to do is reset a state machine
using a button.
–  User can “reset” the system.

•  Because the button transition could violate set-
up or hold time, some state bits of the state
machine might come out of reset at different
times.
–  And you quickly end up at a wrong or illegal state.

So…

•  Dealing with inputs not synchronized to our local clock
is a problem.
–  Likely to violate setup or hold time.

•  That could lead to things breaking.

•  So we need a clock synchronization circuit.
–  First flip-flop might have problems.
–  Second should be fine.
–  Sometimes use a third if

really paranoid
•  Safety-critical system for example.

Figure from http://www.eeweb.com/electronics-quiz/solving-metastability-design-issues, we use the same thing to deal with external inputs too!

Design rules

3.  Thou shalt use a clock
synchronization circuit when
changing clock domains or using
unclocked inputs!

/* Synchonization of Asynchronous switch input */

always@(posedge clk)
begin
 sw0_pulse[0] <= sw_port[0];
 sw0_pulse[1] <= sw0_pulse[0];
 sw0_pulse[2] <= sw0_pulse[1];
end
 always @(posedge clk) SSELr <= {SSELr[1:0], SSEL};

