, V
R Vilk

EECS 373

Design of Microprocessor-Based Systems

Ron Dreslinski
University of Michigan

Serial buses, digital design

(not used) In)

Material taken from Brehob, Dutta, Le,
Ramadas, Tikhonov & Mabhal

A

Vil

Timer

Program

//Setup Timer

ISR

//Do Something

Virtual Timer

[
<
B

[Virtual Event Queue

Program 1
//Setup Timer @3
//Setup Timer @5

Program 2

//Setup Timer @D2

Virtual Timer Code

//Update Event Queue

//Adjust Timer if needed

4

Program 3

//Setup Timer @D7

Program 1-Handler
//Do Seomthing

Program 2-Handler |\
//Do Something

Program 3-Handle

//Do Something

3

Virtual IS

//Figure out\sourCe

bl
bl
bl
bl
//Insert new e
//Set new time

—g
=

~

Event Queue

Program 1
//Setup Timer @3

//Setup Timer @5 -

Program 2

//Setup Timer @DZ’

Program 3

//Setup Timer @D7’

Null

A

Vil

Event Queue

Program 1

//Setup Timer @5 p

Program 2

//Setup Timer @DZ’

Program 3

//Setup Timer @D7’

?

Time:| 3
Delta: [I

Hdlr Ptr

Mode: | One

A
Vil

Event Queue
Vil

Program 1
//Setup Timer @3

Time: [Z A 5

Delta:| -1 3
Program 2 Mode:| One)
//Setup Timer @D2 :

7 Time: l 5 A L

Program 3 Delta: | -1 %

Mode:l One 3
//Setup Timer @D7,

Event Queue
Vi

Program 1
//Setup Timer @3
//Setup Timer @5 7 Time: | 3 h 5
Delta:| -1 =
Program 2 Mode: | One
TR E
Time: 5 L
Program 3 Delta: | -1 %
Mode:l One =
//Setup Timer @D7
P @ . B

Hdlr Ptr

Event Queue

Program 1
//Setup Timer @3

//Setup Timer @5 -

Program 2

//Setup Timer @DZV

Program 3

//Setup Timer @D7’

[MICHIGAN |
Vil

Event Queue
Vil

Program 1
//Setup Timer @3
//Setup Timer @5 - — Z]\ -
Delta: l =
Program 2 e 5
= Mode: [Delta)
//Setup Timer @D2 Y
4 Time: | 3 A 3
Program 3 Detia: (1] |2
Mode:l One 3

Time: | 5 Time:

Delta:| -1 Delta:
Mode:' One P Mode: |Delta y

Hdlr Ptr

Hdlr Ptr

Event Queue
Vi

Program 1
//Setup Timer @3

//Setup Timer @5 -

w)

(N

(—F

=
HH
Hdlr Ptr

Program 2
& Mode:

Delta)
//Setup Timer @D2 Y ~
4 Time: | 3 3
Program 3 Detia: (1] |2
Mode:l One 3
//Setup Timer @D7’ ~
3 Time: [z 3 Time: Z] 3
% Delta: | -1 % Delta: | 7 l %
Mode:' One Mode: Deltal y

10

Event Queue
Vi

Program 1
//Setup Timer @3
Ti
//Setup Timer @5 - — Z]\ -
Delta: l =
Program 2 o L 3
= Mode: [Delta)
//Setup Timer @D2 Y
4 Time: | 3 A 3
Program 3 Detia: (1] |2
Mode:l One 3
//Setup Timer @D7 N
4 3 Time: [z 3 Time: Z] 3
% Delta: | -1 % Delta: | 7 l %
Mode:' One Mode: Deltal y

11

Event Queue
Vi

Program 1
//Setup Timer @3

//Setup Timer @5 -

Time: | 2 | 5
Delta: =
Program 2 el Z] T
- Mode: Delta, y
//Setup Timer @D2 v ~ Virtual ISR
7 (e (] & S igure out s
Program 3 Delta: l -1 % //Remove head
Mode: { One) |= //Insert new event?
//Setup Timer @D7 //Set new time <
4 Time: | 7 l

Time: | 5§
Delta: | -1 Delta: :E
Mode: | One Mode: Deltal y

Hdlr Ptr

Hdlr Ptr

338

12

Event Queue
:) Vil
Time: | 2 l 5
Delta: | 2 l 3%:
Mode:
Program 1
//Setup Timer @3

//Setup Timer @5 -

Program 2
//Setup Timer @D2 Virtual ISR
4 Time: | . //Figure out source
Program 3 Detia: (1] |2
Mode: { One) |= //Insert new event?
//Setup Timer @D7, //Set new time <
K Time: | 3 3 Time: | 5§ l 3
% Delta: | -1 % Delta: | 7 l %
Mode:' One Mode: Deltal y

13

Event Queue

Program 1
//Setup Timer @3

//Setup Timer @5 -

Program 2

//Setup Timer @DZV

Program 3

//Setup Timer @D7,

A

Vil

Time: \
Delta:
Mode:

Hdlr Ptr

Virtual ISR

//Figure out source
//Remove head

_— //Setnew time 7

Hdlr Ptr

Time: | 2 l\ 3 Time: | 3 3 Time: Z]\ K
Delta: | 2 l % Delta: | -1 % Delta: | 7 l %
Mode: [Delta y Mode:| One Mode: Deltal y

14

Event Queue
Vil
Program 1 F
//Setup Timer @3 N
//Setup Timer @5 - Time: ,
Delta: S
Program 2 Mode: 3

//Setup Timer @D2 Virtual ISR
4 g //Figure out sou
Program 3 ¥ //Remove head
//Setup Timer @D7 ~ 4
4 Time: | 2 l 3 Time: | 3 3 Time: | 5§ l K
Delta: | 2 l % Delta: | -1 % Delta: | 7 l %
Mode: |Delta y Mode:| One Mode: Deltal y

15

Event Queue - Caveats

No new event
added for one-shot

Time:

Vo2

-
Delta: %
(One) }=

Delta:
Mode:

v
Time: | 2 3

R Vilk

Handler may need
to loop to handle

multiple events at
same time

Hdlr Ptr

Time:
Delta:
Mode:

Hdlr Ptr

1
U

One

Hdlr Ptr

Time: | 5§ P
Delta: | 7
Mode: |Delta)

Agenda B

R Vilk

e Serial Buses

- Introduction
- UART

- SPI

- 12C

e Glitches
- Asynchronous resets and glitches
- Design rules

e Set-up and hold time.
- Review

- Dealing with external inputs
e Design rules

Serial interfaces

[MICHIGAN |
Vil
traps &
exceptions
1—C
EECS 370 l: N
ISA Software svc# ig :;i::;) Machine Code
Hardware — CPU
INT#
A
interr / System Buses
s —— - AHB/APB
1‘ Interrupts'f) 1‘
0 2 M 2% MR 2 S 2
| : Internal &
GPIO/INT Timers I USART | DAC/ADC External
| I Memory
l |
i |
Internal é"%lél 'i'él I 'Q‘%%I é"%l %
1 I
External =
R SR S PO NS RO N
R P & FS SN
S &L , ©9 S

External memory attaches to the processor e

: ik Vil
via the external memory controller and bus “

O
2
L0 %
O30 N
&Y S g s &
| S © RN s &
P SLAvE QORIL $ VESEFD L S
> 1 | 133318 A Atmel SAM3U
System Controller JTAG & Serial Wire HS UTMI I Y
TST—p Y I I Transcaiver Voita Bl
ol vivyl _ e,
-PCK2 PLLA In-Circuit Emulator USB
| SysTick Counter] N Device
UPLL N3P v HS ——
PMC bt ' : Controller
XIN=—> Fmax 96 MHz c e '\J
XOUT <— 3-203 > =0 — oo
RC Osc.) i €— |
12/8/4 $ | S . l«— [—> D0-Di5
Flash NAND Flash| [_)—b ﬁglv'NBSO
) - SRAM |
Unique S-layer AHB Bus Matrix - (4KBytes) | F—1 L 20.420
VDDUTMI— |dentifier] —_—
VDDCORE — l l l l l T l T — |—> ncst
BOD L1 |—» NRD
FLASH SRAMO SRAM1 ROM Peripheral Peripheral 4-Channel —1 > NWRONWE
RC32K|| 8 2x128 KBytes || 32 KBytes|| 16 KBytes| | 1 kByta DMA Bridge DMA —— [NWRiNBSi
vt
GPBREG 1x128 KBytes || 16 KBytes|| 16 KBytes Controller e NWAIT
1x64 KB < <>
o na [e | e——— , 11 vemary | 2] [€> 42
L + + + ’ * * & + Controller | —»| |< NANDALE
SHON-€—J| surc || rTc > |3
FWUP—»] - PDC poc| |PDC PDC PDC NANDCLE
— > |« NCS3
VDDBU—{[FOH] achannal | |Twio USARTO TCo -
NRSTB—3 12.bit ADC UART, USART{ PWM || TC1 SPI SsC —>| [« NCs2
ERASE—> RSTC || oane TWIH pompiads o
NRST <€ = USART3 »| | NANDOE,
NANDWE
N T e [T 111 [TIT1T _TT1] N
I PIOCI 7

Vi I VLY I3

£ oF E Ra? T SO & $ob Lot
ST ST SO G ORI
S S R0 & ©
& & % W ST
& ® ¥ ¢

UART ETr

R Vilk

e Universal Asynchronous Receiver/Transmitter

- a type of "asynchronous receiver/transmitter”, a piece of
computer hardware that translates data between parallel
and serial forms.

- UARTs are commonly used in conjunction with
communication standards such as EIA, RS-232, RS-422 or
RS-485.

- The universal designation indicates that the data format and
transmission speeds are configurable and that the actual
electric signaling levels and methods (such as differential
signaling etc.) typically are handled by a special driver
circuit external to the UART.

Most of the UART stuff (including images) Taken from Wikipedia!

Fun with buses

e A multidrop bus (MDB) is a computer bus in
which all components are connected to the same
set of electrical wires. (from Wikipedia)

- In the general case, a bus may have more than one
device capable of driving it.

e That is, it may be a “multi-master” bus as discussed
earlier.

Microprocessor

Control | | ALU
Unit

32 wires

Registers| 32 wires

32 data
outputs

32 data
inputs

How can we handle multiple (potential) bus drivers?
(1/3)

Bus

. Tri-state devices, just have et |
one device drive at a time. T
Everyone can read though Lo
- Pros: =t
« Very common, fairly fast, pin- == ’
efficient. &
- Cons:
e Tri-state devices can be slow.
- Especially drive-to-tristate? Bus Contro

0 = Address .

e Need to be sure two folks not driving at tn€*ame ume
- Let out the magic smoke.

- Most common solution (at least historically)
e Ethernet, PCl, etc.

How can we handle multiple (potential) bus drivers?
(2/3)

o MUX

- Just have each device generate its data, and have a
MUX select.

e That’s a LOT of pins.

- Consider a 32-bit bus with 6 potential drivers.
» Draw the figure.
» How many pins needed for the MUX?

- Not generally realistic for an “on-PCB” designh as we’ll
need an extra device (or a lot of pins on one device)

e But reasonable on-chip
- In fact AHB, APB do this.

How can we handle multiple (potential) bus drivers?
(3/3)

e “pull-up” aka “open
collector” aka “wired OR”
- Wire is pulled high by a

reSlStOF Internal to IC External to IC
- |f any dev1.ce pulls the “open*
wire low, it goes low. pase Collector

IC Outputs Input
e Pros:

- |If two devices both drive
the bus, it still works!

IC Ground

e Cons:
- Rise-time is very slow.
- Constant power drain. * * . Vec
L4 Used in IZC, CAN :Q‘Y“p SDA
SCL

GND

Agenda

e Serial Buses

- UART
- SPI
- 12C

e Glitches
- Asynchronous resets and glitches
- Design rules

e Set-up and hold time.
- Review

- Dealing with external inputs
e Design rules

UART

o Universal Asynchronous Receiver/Transmitter
 Hardware that translates between parallel and serial forms

« Commonly used in conjunction with communication
standards such as EIA, RS-232, RS-422 or RS-485

e The universal designation indicates that the data format
and transmission speeds are configurable and that the
actual electric signaling levels and methods (such as
differential signaling etc.) typically are handled by a
special driver circuit external to the UART.

Most of the UART stuff (including images) Taken from Wikipedia!

Protocol
BVik

e Each character is sent as
- a logic low start bit

a configurable number of data bits (usually 7 or 8,
sometimes 5)

- an optional parity bit
- one or more logic high stop bits.
- with a particular bit timing (“baud” or “baudrate”)

e Examples
- “9600-N-8-1" - <baudrate><parity><databits><stopbits>
- “9600-8-N-1” - <baudrate><databits><parity><stopbits>

27

Variations and fun times .y

R Vilk

o UART is actually a generic term that includes a
large number of different devices/standards.
- RS-232 is a standard that specifies

» “electrical characteristics and timing of signals, the
meaning of signals, and the physical size and pin
out of connectors.

Signals (only most common) R

R Vilk

 The RXD signal of a UART is the signal receiving the data. This will
be an input and is usually connected to the TXD line of the
downstream device.

« The TXD signal of a UART is the signal transmitting the data. This
will be an output and is usually connected to the RXD line of the
downstream device.

« The RTS# (Ready to Send) signal of a UART is used to indicate to
the downstream device that the device is ready to receive data.
This will be an output and is usually connected to the CTS# line of
the downstream device.

o« The CTS# (Clear to Send) signal of a UART is used by the
downstream device to identify that it is OK to transmit data to
the upsteam device. This will be an input and is usually connected
to the RTS# line of the upstream device.

DB9 stuff

« DTE vs DCE

e Pinout of a DCE?
« Common ground?
« Noise effects?

Pin 3
Transmit
Pin 2 Data (TD)
Receive Data Pin 4
Pin 1 (RD) Data Terminal
Data Carrier Ready (DTR)
Detect (DCD) (not used)

(ot used)

Pin6
Data Set
Ready (DSR)

(not used) Ringing Indicator (RI)
Pin7 bins (not used)
Request to n

Send (RTS) Clear to Send

(CTS)

DTE
Side

DCE
Side

2 Transmitted Data

- Reccived Data 2

3 ReceivedData -l

Transmitted Daxa 3

- QexrtoSend 4

4 Requestto Send

5 Jearto Send -l

Requestto Send 5

, V
R Vilk

Nll':l!ll;)el‘ Signal Description
1 DCD Data carrier detect
2 RxD Receive Data
3 TxD Transmit Data
= DTR Data terminal ready
5 GND Signal ground
6 DSR Data set ready
7 RTS Ready to send
8 CTS Clear to send
9 RI Ring Indicator

Wiring a DTE device to a DCE device for communication is easy.

The pins are a one-to-one connection, meaning all wires go from pin x to pin x.

A straight through cable is commonly used for this application.
In contrast, wiring two DTE devices together requires crossing the transmit and receive wires.

This cable is known as a null modem or crossover cable.

, V
R Vilk

le

RS232 Transmission of the letter 'J'

ission examp

[

RS-232 transm

'
- ———mcemssmemes

'
- ———cmeemsememes

- —cmeemeememe.

e ——— e mccmcsmcmceme e .-

Logc wiue

— - .- -

+12V ——

+35V

+12V ——

Meaning

Agenda B

R Vilk

e Serial Buses

- SPI
- 12C

e Glitches
- Asynchronous resets and glitches
- Design rules

e Set-up and hold time.
- Review

- Dealing with external inputs
e Design rules

i Introduction

= What is it?
= Basic Serial Peripheral Interface (SPI)
= Capabilities

= Protocol
= Pro / Cons and Competitor
| USGS SCLK » SCLK
. Master MISO < "| MSo slave
= Conclusion Ss »| 55

Serial Peripheral Interface

http://upload.wikimedia.org/wikipedia/commons/thumb/e/ed/
SPI_single_slave.svg/350px-SPI_single_slave.svg.png

What is SPI?

= Serial Bus protocol
= Fast, Easy to use, Simple
= Everyone supports it

Integrated Controller

owerPs ™

75H6051 03BM
1F11D00RPB KOREA
IBM39 STB02100 PBC 22C

i SPI Basics

= A communication protocol using 4 wires
= Also known as a 4 wire bus

s Used to communicate across small
distances

= Multiple Slaves, Single Master
= Synchronized

i Capabilities of SPI

= Always Full Duplex

« Communicating in two directions at the
same time

= Transmission need not be meaningful
= Multiple Mbps transmission speed
= [ransfers data in 4 to 16 bit characters

= Multiple slaves
= Daisy-chaining possible

\J

i Protocol

SS BAR

Y

=« Master Out Slave In (MOSI)
=« Master In Slave Out (MISO)
= System Clock (SCLK)
= Slave Select 1...N
= Master Set Slave Select low
= Master Generates Clock
= Shift registers shift in and out data

_| MOsI

i Wires in Detail | = =

»{ SS_BAR

s MOSI — Carries data out of Master to
Slave

s MISO - Carries data from Slave to
Master

= Both signals happen for every transmission
= SS_BAR — Unique line to select a slave

s SCLK — Master produced clock to
synchronize data transfer

Shifting Protocol

Master Slave

Memory Memory

SCLK'

MOSI

* MISO

Master shifts out data to Slave, and shift in data from Slave

http://upload.wikimedia.org/wikipedia/commons/thumb/b/bb/SPI_8-bit_circular_transfer.svg/400px-SPI_8-bit_circular_transfer.svg.png

Diagram

SCLK » SCLK
MOSI MOSI SPI
Master S51 » 55 —
) ss
8§83 — SCK
: I?A%I-SKI sP| SLAVE 1 SLAVE 2 SLAVEN
MISO Slave —Cs —cs cs
» 55 SCLK SCLK SCLK
MOSI DIN DOUT DIN DOUTl—wo...m——IDIN DOUT
» SCLK
—» MOSI SPI ;
MISO Slave Some wires have been renamed
» S5
Master and multiple daisy-
o chained slaves
Master and mu|t|p|e |ndependent http://www.maxim-ic.com/appnotes.cfm/an_pk/3947
slaves

http://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/
SPI_three_slaves.svg/350px-SPI_three_slaves.svg.png

i Clock Phase (Advanced)

= Two phases and two polarities of clock
= Four modes

s Master and selected slave must be in
same mode

= Master must change polarity and phase
to communicate with slaves of different
numbers

Timing Diagram

L5

e I N e e)
ckrot=0 (el —] (Rl | [SmiE) (el
e pmEs | s | g | g

CkPOL~t —(HENSNNN| [[HSSNwN) [SN [SN | ;

Mosmiso—CC ymse P BX)8 ¢ 18 i LS8)—

SSEL) B
Sampling Points ’ f * * ’ * * *

Timing Diagram — Showing Clock polarities and phases

http://www.maxim-ic.com.cn/images/appnotes/3078/3078Fig02.gif

i Pros and Cons

Pros:
= Fast and easy
= Fast for point-to-point connections
= Easily allows streaming/Constant data inflow
= No addressing/Simple to implement
= Everyone supports it
Cons:
= SS makes multiple slaves very complicated
= No acknowledgement ability
= No inherent arbitration
= No flow control

i Uses

= Some Serial Encoders/Decoders,
Converters, Serial LCDs, Sensors, etc.

= Pre-SPI serial devices

i Summary

= SPI — 4 wire serial bus protocol
= MOSI MISO SS SCLK wires

= Full duplex

= Multiple slaves, One master

= Best for point-to-point streaming data
= Easily Supported

Agenda B

R Vilk

e Serial Buses

- 12C

e Glitches

- Asynchronous resets and glitches
- Design rules

e Set-up and hold time.
- Review

- Dealing with external inputs
e Design rules

i What is 12C?

= Inter-Integrated Circuit
= Pronounced “eye-squared-see”
= Two-wire serial bus protocol

= Invented by Philips in the early 1980’s
= That division now spun-off into NXP

i Where is it used?

= Originally used by Philips inside television sets
= Now very common in peripheral devices
intended for embedded systems use

= Philips, National Semiconductor, Xicor, and
Siemens, ...

= Also used in the PC world
= Real time clock
=« Temperature sensors

i Technical Description

= [Wo-wire serial protocol with
addressing capability

= Speeds up to 3.4 Mbit/s
= Multi-master/Multi-slave

iWiring

= TWO lines
= SDA (data)
= SCL (clock)

= Open-collector

« Very simple interfacing between different
voltage levels

iCIock

= Not a traditional clock
= Normally high (kept high by the pull-up)

= Pulsed by the master during data
transmission (whether the master is
transmitter or receiver)

= Slave device can hold clock low if it
needs more time

i A Basic I2C Transaction

Master always initiates transactions
Start Condition

Address

Data

Acknowledgements

Stop Condition

Addr MSB AddrLSB RW ACK , Data MSB DataLSB ACK

soﬁz\/ﬂyxx\g, OO
MKMJMNW

START SLA+R/W ! Data Byte STOP

Source: ATMeQaS Handbook

i A Basic I2C Transaction

= [ransmitter/Receiver differs from
Master/Slave

= Master initiates transactions, slave
responds

= [ransmitter sets data on the SDA line,
Receiver acknowledges
= For a read, slave is transmitter
« For a write, master is transmitter

i Start Condition

= Master pulls SDA low while SCL is high

=« Normal SDA changes only happen while
SCL is low

SDA

(.
\

i Address Transmission

= Data is always sampled on rising edge
of clock

s Address is 7 bits
= An 8th bit indicates read or write
= High for read, low for write

= Addresses assigned by Philips/NXP (for
a fee)

i Data Transmission

= Transmitted just like address (8 bits)
= For a write, master transmits, slave acknowledges
= For a read, slave transmits, master acknowledges

= Transmission continues with subsequent bytes until
master creates stop condition

Data MSB DataLSB ACK

]
. (i
Aggregate \ \ \/ ¥ \/ >< \/ / .
SDA e / /"/ _L.(._/ ‘ /) i
. {
SDA from \ < h \/ I
Transmitter AN \
______ 4 I
SDA from 7 ' N /1
Receiver / \ / :
1
SCL from ' o E
Master 4 ,_/ o
)} I
! 2 7 8 9 | STOR REPEATED
SLA+R/W Data Byte ! START or Next
|

Data Byte

Source: ATMega8 Handbook

i Stop Condition

= Master pulls SDA high while SCL is high
s Also used to abort transactions

SDA

/—
SCL \

iAnother Look

SDA

SCL

Addr MSB

AddrLSB RW ACK

VA G 0 G G G\

Data MSB Data LSB ACK

/OO XN

-
@

SLA+R/W

Source: ATMega8 Handbook

Agenda ST e

R Vilk

e Glitches

- Asynchronous resets and glitches
- Design rules

e Set-up and hold time.
- Review

- Dealing with external inputs
e Design rules

Glitches ETr

R Vilk

« Combinational logic can glitch
- What is a glitch?
- How do we normally deal with it?
- Where can it hurt us?

Timing rciien
Vil

e Assuming the
XOR gates have

a delay of 0.2ns

|
Yy

D . while AND and
i M —— OR gates have a
N delay of 0.1ns
}_Z co - What is the
worst case
Full adder (from Wikipedia) propagation

delay for this
circuit?

, V
R Vilk

0.6 0.7 0.8 0.9 1.0 1.1(ns)

0.3 0.4 0.5

Glitches

a delay of 0.2ns while AND and OR gates have a delay of 0.1ns, fill in
0.1 0.2

Consider the adjacent circuit diagram. Assuming the XOR gates have
the following chart.

Co
0.0

X
/D?) >—‘S
y

Full adder (from Wikipedia)

:-—H
Ci —r

Only selected causality

arrows shown...

Glitching: a summary Cicrioan |
Vil

e When input(s) change, the output can be wrong
for a time. However, that time is bound.

- And more so, the output can change during this
“computation time” even if the output ends up where
it started!

Effect of Glitches ETr
Vil

« Think back to EECS 370.

- Why don’t glitches cause errors?

111 -

=l

SwW

EX Mem

So, how can glitches hurt us? ———

| MicHIGAN
Vil
PRE
« There are a handful of places: = B
C
- Asynchronous resets —p
e If you’ve got a flip-flop that has an 3 | =X
asynchronous reset (or “preset”) you need to CLR
be sure the input can’t glitch. Traditonally, CLR s used
- That pretty much means you need a flip- o indicate async reset. “R”

or “reset” for sync. reset.

flop driving the input (which means you
probably should have used a sync. reset!)

Clock in out
- Clocks cond :D—‘_>
« If you are using combinational logic to drive a
clock, you are likely going to get extra clock If clk is high and cond

glitches, you get extra
ed geS . edges!

. y .
Design rules ST e

R Vilk

PRE

1. Thou shall Not use asynchronous
resets

2. Thou shall not drive a clock with
anything other than a clock or
directly off of a flip-flop’s output

in out
cond

clk

Really? ST e

R Vilk

e | mean people use asynchronous resets and clock gating!

- Yep. And people use goto in C programs.

e Sometimes they are the right thing.

- But you have to think really hard about them to insure
that they won’t cause you problems.

- Our “simple” bus used
combinational logic for
the clock

e Works because REQ goes
low only after everything
else has stopped switching ‘'

- So no glitch.
e Not fun to reason about...
e Avoid unless you must
- Then think really carefully.

Agenda ST e

R Vilk

e Set-up and hold time.
- Review
- Dealing with external inputs
e Design rules

Setup and hold time B

R Vilk

e The idea is simple.
- When the clock is changing

if the data is also changing it Setup, Hold Time
is hard to tell what the data
is. o
. Hardware can’t always tell c
eee D changing i E E D changing
- So we have a “guard band” around! _.... .4 ...

during which we don’t allow the data to change.

e See diagram. We call the time before the clock-
edge “setup time” and the time after “hold time”

y
Device Min | Max | Example: “-:'
DFF: . :
dedoa |1 T as | Fast and slow paths;
e impact of setup and hold time
OR/AND 2ns 6ns
NOT 1ns 3ns
NAND/NOR 2ns 5ns
XOR 3ns ns
— _ -
L >CLKQ0 Qb X
A Do|_D_LD: o G
D_F SCLK Qo———
—
CLK

Assume that the input A is coming from a flip-flop that has the same properties as the flip-flops that
are shown and is clocked by the same clock.

a. Add inverter pairs as needed to the above figure to avoid any “fast path” problems. Dosoin a
way that has least impact on the worst-case delay (as a first priority) and which keeps the
number of inverter pairs needed to a minimum (as a second priority).

b. After you've made your changes in part a, compute the maximum frequency at which this
device can be safely clocked.

So what happens if we violate set-up or hold time? B

R Vilk

o Often just get one of the two values.
- And that often is just fine.
« Consider getting a button press from the user.

o If the button gets pressed at the same time as the

clock edge, we might see the button now or next
clock.

- Either is generally fine when it comes to human
input.
- But bad things could happen.

» The flip-flop’s output might not settle out to a “0”
ora “1”

- That could cause latter devices to mess up.

e More likely, if that input is going to two places, one
might see a “0” the other a “1”.

Example e eurem
"\{ 1

« A common thing to do is reset a state machine
using a button.

- User can “reset” the system.
e Because the button transition could violate set-

up or hold time, some state bits of the state

machine might come out of reset at different
times.

- And you quickly end up at a wrong or illegal state.

So... oy

R Vilk

« Dealing with inputs not synchronized to our local clock
is a problem.
- Likely to violate setup or hold time.
e That could lead to things breaking.

e So we need a clock synchronization circuit.
- First flip-flop might have problems.
- Second should be fine.

- Sometimes Use a third if Synchronization Register Chain
really paranoid EEEET TR 2

I |

o Safety-critical system for example,—ipP @ B B B i

Clockl D : > > |

|

Clock2 :\ I_ -|_ ,I

N ————————— -

Figure from , we use the same thing to deal with external inputs too!

Design rules ST e

R Vilk

3. Thou shalt use a clock
synchronization circuit when
changing clock domains or using
unclocked inputs!

Synchronization Register Chain

—————————— —,

/ \

I I

Data_In B ! b6 D QF !

/* Synchonization of Asynchronous switch input */ | |
| I

Clockl > ! > > |

always@ (posedge clk) | [. |
begin Clockz —4 -
sw0_pulse[0] <= sw_port[0]; N /

N ————————— -

sw0_pulse[l] <= sw0_pulse[0];
sw0_pulse[2] <= sw0_pulse[l];
end

always ((posedge clk) SSELr <= {SSELr[1:0], SSEL};

