
EECS	373	
	

An	very	brief	introduc5on	to		
•  Real-5me	systems	
•  Real-5me	OSes	

Chunks	adapted	from	work	by	
Dr.	Fred	Kuhns	of	Washington	University	

and	Farhan	Hormasji	

Announcements	

•  Schedule	for	the	remainder	of	the	semester	
– Today,	12/5,	(Last	lecture)	
•  Use	remaining	lecture	5me	slots	to	work	on	projects	

– 12/13	Design	Expo	
– 12/15	Project	Write-up	Due	
– 12/18	Lab	Clean-up	complete	
– 12/21	Final	Exam	
•  	1:30-3:30pm	in	1010/1018	DOW	

•  Please	fill	out	course	evalua5on	online	

What	is	a	Real-Time	System?	
•  Real-5me	systems	have	been	defined	as:	
"those	systems	in	which	the	correctness	of	
the	system	depends	not	only	on	the	logical	
result	of	the	computa5on,	but	also	on	the	
5me	at	which	the	results	are	produced";	
–  	J.	Stankovic,	"Misconcep5ons	About	Real-Time	
Compu5ng,"	IEEE	Computer,	21(10),	October	
1988.	

What	is	a	RTS?	

Real-Time	Characteris5cs	

•  Pre_y	much	your	typical	embedded	system	
–  Sensors	&	actuators	all	controlled	by	a	processor.	
–  The	big	difference	is	!ming	constraints	(deadlines).	
	

•  Those	tasks	can	be	broken	into	two	categories1	
–  Periodic	Tasks:	Time-driven	and	recurring	at	regular	
intervals.	
•  A	car	checking	for	a	wall	every	0.1	seconds;		
•  An	air	monitoring	system	grabbing	an	air	sample	every	10	seconds.		

–  Aperiodic:	event-driven	
•  That	car	having	to	react	to	a	wall	it	found	
•  The	loss	of	network	connec5vity.		

1Sporadic	tasks	are	some5mes	also	discussed	as	a	third	category.		They	are	tasks	similar	to	aperiodic	tasks	but	ac5vated	with	some		
		known	bounded	rate.			The	bounded	rate	is	characterized	by	a	minimum	interval	of	5me	between	two	successive	ac5va5ons.	

What	is	a	RTS?	

Soc,	Firm	and	Hard	deadlines	

•  The	instant	at	which	a	result	is	needed	is	called	a	
deadline.		
–  If	the	result	has	u5lity	even	acer	the	deadline	has	
passed,	the	deadline	is	classified	as	so4,	otherwise	it	
is	firm.		

–  If	a	catastrophe	could	result	if	a	firm	deadline	is	
missed,	the	deadline	is	hard.	

•  Examples?	

Defini5ons	taken	from	a	paper	by	Kanaka	Juvva,	not	sure	who	originated	them.	

What	is	a	RTS?	

Why	is	this	hard?	
Three	major	issues	

1.  We	want	to	use	as	cheap	($$,	power)	a	
processor	as	possible.	
– Don’t	want	to	overpay	

2.  There	are	non-CPU	resources	to	worry	about.	
– Say	two	devices	both	on	an	SPI	bus.	
– So	ocen	can’t	treat	tasks	as	independent	

3.  Valida5on	is	hard	
– You’ve	got	deadlines	you	must	meet.	
•  How	do	you	know	you	will?	

Let’s	discuss	that	last	one	a	bit	more	

What	is	a	RTS?	

What	is	a	real-5me	OS	
(RTOS)?	

•  Well,	an	OS	to	manage	to	meet	RT	deadlines	(duh).	
– While	that’s	all	we	need	we’d	like	a	lot	more.	

•  Acer	all,	we	can	meet	RT	deadlines	fairly	well	on	the	bare	metal	
(no	OS)	
–  But	doing	this	is	5me	consuming	and	difficult	to	get	right	as	the	system	

gets	large.	
•  We’d	like	something	that	supports	us	

–  Deadlines	met	
–  Interrupts	just	work	
–  Tasks	stay	out	of	each	others	way	
–  Device	drivers	already	wri_en	(and	tested!)	for	us	
–  Portable—runs	on	a	huge	variety	of	systems	
–  Oh,	and	nearly	no	overhead	so	we	can	use	a	small	device!	

»  That	is	a	small	memory	and	CPU	footprint.	

Detailed	features	we’d	like	

Deadlines	met	
•  All	the	tasks	can	run	and	

stay	out	of	each	other’s	
way.	

•  Interrupts	are	fast	
–  So	tasks	with	5ght	deadlines	

get	service	as	fast	as	possible	
•  Basically—rarely	disable	
interrupts	and	when	doing	
so	only	for	a	short	5me.	

Interrupts	just	work	
•  Don’t	need	to	worry	about	

saving/restoring	registers	
–  Which	C	just	generally	does	

for	us	anyways.	

•  Interrupt	priori5za5on	easy	
to	set.	

Say	you	have	“tasks”	you	want	to	do	

•  Consider	a	car	driving	around	by	itself.		Has	a	lot	
of	things	it	needs	to	do	
–  Read	sensors	
–  Read	camera	(yes,	it’s	a	sensor,	but	lots	more	CPU)	
– Drive	motors	
– Make	high-level	decisions	about	what	ac5ons	to	take.	

•  For	your	project,	you	have	probably	found	that	
“integra5on”	is	the	hard	part.	
–  That	is,	each	task	isn’t	so	bad,	but	geong	them	all	
working	together	sucks.	

Detailed	features	we’d	like:	
Tasks	stay	out	of	each	others	way	

•  This	is	actually	remarkably	
hard	
–  Clearly	we	need	to	worry	about	

CPU	u5liza5on	issues	
•  scheduling	algorithm		

–  But	we	also	need	to	worry	
about	memory	problems.	
•  One	task	running	awry	shouldn’t	

take	the	rest	of	the	system	
down.	

–  So	we	want	to	prevent	tasks	
from	harming	each	other		
•  This	can	be	key.		If	we	want	

mission	cri5cal	systems	sharing	
the	CPU	with	less	important	
things	we	have	to	do	this.	

•  Alterna5ve	it	to	have	separate	
processors.	
–  $$$$	

•  The	standard	way	to	do	this	is	
with	page	protec5on.	
–  If	a	process	tries	to	access	

memory	that	isn’t	its	own,	it	
fails.	
•  Probably	a	fault.	
•  This	also	makes	debugging	a	LOT	

easier.	

•  This	generally	requires	a	lot	of	
overhead.	
–  Need	some	sense	of	process	

number/switching		
–  Need	some	kind	of	MMU	in	

hardware	
•  Most	microcontrollers	lack	this…	
•  So	we	hit	some	kind	of	minimum	

size.	

Further	reading	on	page	protec5on	(short)	h_p://homepage.cs.uiowa.edu/~jones/security/notes/06.shtml		

Hardware	interfaces	wri_en	(and	tested!)	for	us	

•  Ideally	the	RTOS	has	an	interface	for	all	the	
on-board	peripherals.	
–  It’s	a	lot	easier	to	call	a	“configure_I2C()”	func5on	
than	to	read	the	details	of	the	device	specifica5on	
than	to	do	the	memory-mapped	work	yourself	

Portable	

•  RTOS	runs	on	many	plavorms.	
– This	is	poten5ally	incomputable	with	the	previous	
slide.	

–  It’s	actually	darn	hard	to	do	even	without	
peripherals	
•  Things	like	5mers	change	and	we	certainly	need	5mers.	

A	specific	RTOS:	FreeRTOS	

•  One	of	the	more	popular	(and	free)	RTOSes	
out	there.	
– There	are	many	commercial	ones	out	there	with	
lots	of	support	and	features.	

– But	FreeRTOS	is:	
•  Free	(as	in	beer	and	speech),	complete	with	source	
• Well	documented	(somewhat	free)	
•  Easy	to	use	
•  Does	the	basics	well	

Tasks	
•  Each	task	is	a	func5on	that	must	not	return	
–  So	it’s	in	an	infinite	loop	(just	like	you’d	expect	in	an	
embedded	system	really,	think	Arduino).	

•  You	inform	the	scheduler	of		
–  The	task’s	resource	needs	(stack	space,	priority)	
– Any	arguments	the	tasks	needs	

•  All	tasks	here	must	be	of	void	return	type	and	
take	a	single	void*	as	an	argument.	
–  You	cast	the	pointer	as	needed	to	get	the	argument.	

•  I’d	have	preferred	var_args,	but	this	makes	the	common	
case	(one	argument)	easier	(and	faster	which	probably	
doesn’t	ma_er).	

Code	examples	mostly	from	Using	the	FreeRTOS	Real	Time	Kernel	(a	pdf	book),	fair	use	claimed.	

Example	trivial	task	with	busy	wait	
(bad)	

Task	crea5on	
portBASE_TYPE xTaskCreate(
 pdTASK_CODE pvTaskCode,
 const char * const pcName,
 unsigned short usStackDepth,
 void *pvParameters,
 unsigned portBASE_TYPE uxPriority,
 xTaskHandle *pvCreatedTask
);
Create	a	new	task	and	add	it	to	the	list	of	tasks	that	
are	ready	to	run.		xTaskCreate()	can	only	be	used	to	
create	a	task	that	has	unrestricted	access	to	the	
en5re	microcontroller	memory	map.		Systems	that	
include	MPU	support	can	alterna5vely	create	an	
MPU	constrained	task	using	xTaskCreateRestricted().	
		
•  pvTaskCode:	Pointer	to	the	task	entry	func5on.		

Tasks	must	be	implemented	to	never	return	(i.e.	
con5nuous	loop).	

•  pcName:	A	descrip5ve	name	for	the	task.		This	is	
mainly	used	to	facilitate	debugging.		Max	length	
defined	by	tskMAX_TASK_NAME_LEN	–	default	
is	16.	

		
		

•  usStackDepth:	The	size	of	the	task	stack	
specified	as	the	number	of	variables	the	stack	
can	hold	-	not	the	number	of	bytes.		For	
example,	if	the	stack	is	16	bits	wide	and	
usStackDepth	is	defined	as	100,	200	bytes	will	
be	allocated	for	stack	storage.	

•  pvParameters:	Pointer	that	will	be	used	as	the	
parameter	for	the	taskbeing	created.	

•  uxPriority:	The	priority	at	which	the	task	should	
run.		Systems	that	include	MPU	support	can	
op5onally	create	tasks	in	a	privileged	(system)	
mode	by	seong	bit	portPRIVILEGE_BIT	of	the	
priority	parameter.		For	example,	to	create	a	
privileged	task	at	priority	2	the	uxPriority	
parameter	should	be	set	to	(2	|	
portPRIVILEGE_BIT).	

•  pvCreatedTask:	Used	to	pass	back	a	handle	by	
which	the	created	task	can	be	referenced.	

•  pdPASS:	If	the	task	was	successfully	created	and	
added	to	a	ready	list,	otherwise	an	error	code	
defined	in	the	file	errors.h	

From	the	task.h	file	in	FreeRTOS	

Crea5ng	a	task:	example	

OK,	I’ve	created	a	task,	now	what?	

•  Task	will	run	if	there	are	no	other	tasks	of	
higher	priority	
– And	if	others	the	same	priority	will	RR.	

•  But	that	begs	the	ques5on:	“How	do	we	know	
if	a	task	wants	to	do	something	or	not?”	
– The	previous	example	gave	always	wanted	to	run.	
•  Just	looping	for	delay	(which	we	said	was	bad)	
•  Instead	should	call	vTaskDelay(x)

–  Delays	current	task	for	X	“5cks”		
•  There	are	a	few	other	APIs	for	delaying…	

Now	we	need	an	“under	the	hood”	understanding	

Task	status	in	FreeRTOS	
•  Running		

–  Task	is	actually	execu5ng		
•  Ready		

–  Task	is	ready	to	execute	but	a	task	of	
equal	or	higher	priority	is	Running.		

•  Blocked		
–  Task	is	wai5ng	for	some	event.	

•  Time:	if	a	task	calls	vTaskDelay()	it	will	
block	un5l	the	delay	period	has	expired.	

•  Resource:	Tasks	can	also	block	wai5ng	
for	queue	and	semaphore	events.	

•  Suspended	
–  Much	like	blocked,	but	not	wai5ng	for	

anything.		
–  Tasks	will	only	enter	or	exit	the	

suspended	state	when	explicitly	
commanded	to	do	so	through	the	
vTaskSuspend()	and	xTaskResume()	API	
calls	respec5vely.		

Mostly	from	h_p://www.freertos.org/RTOS-task-states.html	

Tasks:	there’s	a	lot	more	

•  Can	do	all	sorts	of	
things	
– Change	priority	of	a	
task	

– Delete	a	task	
– Suspend	a	task	
(men5oned	above)		

– Get	priority	of	a	task.	
•  Example	on	the	right	

–  But	we’ll	stop	here…	

void
vTaskPrioritySet(xTask
Handle pxTask,
unsigned
uxNewPriority);
	
Set	the	priority	of	any	task.	
	
•  pxTask:	Handle	to	the	task	for	

which	the	priority	is	being	set.	
Passing	a	NULL	handle	results	
in	the	priority	of	the	calling	
task	being	set.	

•  uxNewPriority:	The	priority	to	
which	the	task	will	be	set.	

A	RTOS	needs	to	do	a	lot	more…	
•  Interrupts	
–  Including	deferred	interrupts	

•  Memory	management	
•  Standard	I/O	interfaces	
•  Fast	context	switch	
•  Locks	
–  So	only	one	task	can	use	certain	resources	at	a	5me.	

•  FreeRTOS	does	each	of	those,	some	be_er	than	
others.	

