EECS 373

An very brief introduction to
* Real-time systems
* Real-time OSes

Chunks adapted from work by
Dr. Fred Kuhns of Washington University

.V. and Farhan Hormasji

Announcements

e Schedule for the remainder of the semester
— Today, 12/5, (Last lecture)

* Use remaining lecture time slots to work on projects
— 12/13 Design Expo
— 12/15 Project Write-up Due
— 12/18 Lab Clean-up complete

— 12/21 Final Exam
e 1:30-3:30pm in 1010/1018 DOW

* Please fill out course evaluation online

What is a RTS?

What is a Real-Time System?

* Real-time systems have been defined as:
"those systems in which the correctness of
the system depends not only on the logical
result of the computation, but also on the
time at which the results are produced";

— J. Stankovic, "Misconceptions About Real-Time

Computing," IEEE Computer, 21(10), October
1988.

What is a RTS?

Real-Time Characteristics

* Pretty much your typical embedded system
— Sensors & actuators all controlled by a processor.
— The big difference is timing constraints (deadlines).

* Those tasks can be broken into two categories*

— Periodic Tasks: Time-driven and recurring at regular
intervals.
* A car checking for a wall every 0.1 seconds;
* An air monitoring system grabbing an air sample every 10 seconds.

— Aperiodic: event-driven
* That car having to react to a wall it found
* The loss of network connectivity.

1Sporadic tasks are sometimes also discussed as a third category. They are tasks similar to aperiodic tasks but activated with some
known bounded rate. The bounded rate is characterized by a minimum interval of time between two successive activations.

What is a RTS?

Soft, Firm and Hard deadlines

e The instant at which a result is needed is called a
deadline.

— |If the result has utility even after the deadline has
passed, the deadline is classified as soft, otherwise it
is firm.

— |f a catastrophe could result if a firm deadline is
missed, the deadline is hard.

 Examples?

Definitions taken from a paper by Kanaka Juvva, not sure who originated them.

What is a RTS?

Why is this hard?
Three major issues

1. We want to use as cheap (SS, power) a
processor as possible.

— Don’t want to overpay

2. There are non-CPU resources to worry about.
— Say two devices both on an SPI bus.
— So often can’t treat tasks as independent

3. Validation is hard

— You’ve got deadlines you must meet.
 How do you know you will?

Let’s discuss that last one a bit more

, V¥
Vil

What is a real-time OS
(RTOS)?

Well, an OS to manage to meet RT deadlines (duh).

— While that’s all we need we’d like a lot more.

» After all, we can meet RT deadlines fairly well on the bare metal
(no OS)
— But doing this is time consuming and difficult to get right as the system
gets large.
 We'd like something that supports us
— Deadlines met
— Interrupts just work
— Tasks stay out of each others way
— Device drivers already written (and tested!) for us
— Portable—runs on a huge variety of systems
— Oh, and nearly no overhead so we can use a small device!
» That is a small memory and CPU footprint.

Vil
[’ [
Detailed features we’d like
Deadlines met Interrupts just work
e All the tasks can run and Don’t need to worry about
stay out of each other’s saving/restoring registers
way. — Which Cjust generally does
* Interrupts are fast for us anyways.
— So tasks with tight deadlines * Interrupt prioritization easy
get service as fast as possible to set.

* Basically—rarely disable
interrupts and when doing
so only for a short time.

Vil

Say you have “tasks” you want to do

* Consider a car driving around by itself. Has a lot
of things it needs to do

— Read sensors

— Read camera (yes, it’s a sensor, but lots more CPU)

— Drive motors

— Make high-level decisions about what actions to take.

* For your project, you have probably found that
“integration” is the hard part.

— That is, each task isn’t so bad, but getting them all
working together sucks.

Detailed features we’d like:

, V¥
Vil

Tasks stay out of each others way

* Thisis actually remarkably
hard

— Clearly we need to worry about
CPU utilization issues
* scheduling algorithm

— But we also need to worry
about memory problems.

* One task running awry shouldn’t
take the rest of the system
down.

— So we want to prevent tasks
from harming each other

e This can be key. If we want
mission critical systems sharing
the CPU with less important
things we have to do this.

e Alternative it to have separate
processors.

— 5555

 The standard way to do this is
with page protection.

— If a process tries to access
memory that isn’t its own, it
fails.

* Probably a fault.
. Thig also makes debugging a LOT
easiler.
* This generally requires a lot of
overhead.

— Need some sense of process
number/switching

— Need some kind of MMU in
hardware
e Most microcontrollers lack this...

* So we hit some kind of minimum
size.

Further reading on page protection (short) http://homepage.cs.uiowa.edu/~jones/security/notes/06.shtml

Vil

Hardware interfaces written (and tested!) for us

ldeally the RTOS has an interface for all the
on-board peripherals.

— It’s a lot easier to call a “configure_12C()” function

than to read the details of the device specification
than to do the memory-mapped work yourself

, V¥
Vil

Portable

 RTOS runs on many platforms.

— This is potentially incomputable with the previous
slide.

— It’s actually darn hard to do even without
peripherals

* Things like timers change and we certainly need timers.

, ¥
Vil

A specific RTOS: FreeRTOS

* One of the more popular (and free) RTOSes
out there.

— There are many commercial ones out there with
lots of support and features.

— But FreeRTOS is:

* Free (as in beer and speech), complete with source
 Well documented (somewhat free)
* Easy to use

 Does the basics well a?

, V¥
Vil

Tasks

e Each task is a function that must not return

— So it’s in an infinite loop (just like you’d expect in an
embedded system really, think Arduino).

* You inform the scheduler of
— The task’s resource needs (stack space, priority)
— Any arguments the tasks needs

* All tasks here must be of void return type and
take a single void* as an argument.

— You cast the pointer as needed to get the argument.

* |"d have preferred var_args, but this makes the common
case (one argument) easier (and faster which probably
doesn’t matter).

Code examples mostly from Using the FreeRTOS Real Time Kernel (a pdf book), fair use claimed.

void

{

Vil

Example trivial task with busy wait
(bad)

vTaskl (void *pvParameters)

const char *pcTaskName = "Task 1 is running\r\n";
volatile unsigned long ul;

/* As per most tasks, this task is implemented in an infinite loop. */
for(;;)

{

/* Print out the name of this task. */
vPrintString(pcTaskName) ;

/* Delay for a period. */

for(ul = 0; ul < mainDELAY LOOP_COUNT; ul++)

{
/* This loop is just a very crude delay implementation. There is
nothing to do in here. Later examples will replace this crude
loop with a proper delay/sleep function. */

, ¥
Vil

Task creation

PortBASE TYPE xTaskCreate (

PdTASK CODE pvTaskCode,

const char * const pcName,

unsigned short usStackDepth,

void *pvParameters,

unsigned portBASE TYPE uxPriority,

xTaskHandle *pvCreatedTask

) ;
Create a new task and add it to the list of tasks that
are ready to run. xTaskCreate() can only be used to
create a task that has unrestricted access to the
entire microcontroller memory map. Systems that

include MPU support can alternatively create an
MPU constrained task using xTaskCreateRestricted().

* pvTaskCode: Pointer to the task entry function.
Tasks must be implemented to never return (i.e.
continuous loop).

* pcName: A descriptive name for the task. This is
mainly used to facilitate debugging. Max length
defined by tskMAX_TASK_NAME_LEN — default
is 16.

From the task.h file in FreeRTOS

usStackDepth: The size of the task stack
specified as the number of variables the stack
can hold - not the number of bytes. For
example, if the stack is 16 bits wide and
usStackDepth is defined as 100, 200 bytes will
be allocated for stack storage.

pvParameters: Pointer that will be used as the
parameter for the taskbeing created.

uxPriority: The priority at which the task should
run. Systems that include MPU support can
optionally create tasks in a privileged (system)
mode by setting bit portPRIVILEGE_BIT of the
priority parameter. For example, to create a
privileged task at priority 2 the uxPriority
parameter should be setto (2 |
portPRIVILEGE_BIT).

pvCreatedTask: Used to pass back a handle by
which the created task can be referenced.

pdPASS: If the task was successfully created and
added to a ready list, otherwise an error code
defined in the file errors.h

[MICHIGAN
Vil

Creating a task: example

int main(wvoid)

{

/* Create one of the two tasks. Note that a real application should check
the return value of the xTaskCreate() call to ensure the task was created

successfully. */
xTaskCreate (vTaskl,

/* Pointer to the function that implements the task. */

"Task 1",/* Text name for the task. This is to facilitate

1000,

NULL,
1,
NULL) ;

debugging only. */

/* Stack depth - most small microcontrollers will use
much less stack than this. */

/* We are not using the task parameter. */

/* This task will run at priority 1. */

/* We are not going to use the task handle. */

/* Create the other task in exactly the same way and at the same priority. */
xXTaskCreate(vTask2, "Task 2", 1000, NULL, 1, NULL);

/* Start the scheduler so the tasks start executing. */

vTaskStartScheduler () ;

Vil

OK, I've created a task, now what?

e Task will run if there are no other tasks of
higher priority
— And if others the same priority will RR.

e But that begs the question: “How do we know
if a task wants to do something or not?”
— The previous example gave always wanted to run.

* Just looping for delay (which we said was bad)

* Instead should call vTaskDelay (x)
— Delays current task for X “ticks”

 There are a few other APIs for delaying...

Now we need an “under the hood” understanding

, ¥
Vil

Task status in FreeRTQOS

* Running
— Task is actually executing
 Ready

— Task is ready to execute but a task of
equal or higher priority is Running.
* Blocked

— Task is waiting for some event.
* Time: if a task calls vTaskDelay() it will

block until the delay period has expired.

* Resource: Tasks can also block waiting
for queue and semaphore events.

* Suspended
— Much like blocked, but not waiting for
anything.
— Tasks will only enter or exit the
suspended state when explicitly

commanded to do so through the
vTaskSuspend() and xTaskResume() API

calls respectively.

Suspended

vTaskSuspend()
called

vTaskSuspend()
called

vTaskResume()
called

vTaskSuspend()

called Event Blocking API

function called

Blocked

Mostly from http://www.freertos.org/RTOS-task-states.html

, V¥
Vil

Tasks: there’s a lot more

e Can do all sorts of
things

— Change priority of a
task

— Delete a task

— Suspend a task
(mentioned above)

— Get priority of a task.

 Example on the right

— But we’ll stop here...

void
vTaskPrioritySet (xTask
Handle pxTask,

unsigned
uxNewPriority);

Set the priority of any task.

* pxTask: Handle to the task for
which the priority is being set.
Passing a NULL handle results
in the priority of the calling
task being set.

* uxNewPriority: The priority to
which the task will be set.

, V¥
Vil

A RTOS needs to do a lot more...

Interrupts
— Including deferred interrupts

Memory management
Standard I/O interfaces
Fast context switch

Locks
— So only one task can use certain resources at a time.

FreeRTOS does each of those, some better than
others.

