, V
R Vilk

EECS 373

Design of Microprocessor-Based Systems

Website: www.eecs.umich.edu/courses/eecs373/

Ronald Dreslinski
University of Michigan

Midterm Review

Slides developed in part by
Prof. Dutta and Dr. Brehob

What is an embedded system? B

R Vilk

, V
R Vilk

What is driving the
embedded everywhere explosion?

Moore’ s Law (a statement about economics):

IC transistor count doubles every 18-24 mo

Transistors
Per Die

® 1965 Actual Data 16 2G 4G

m MOS Arrays A4 MOS Logic 1975 Actual Data 256M 912M

1975 Projection i g Itanium™

Mornd Pentium® 4
; 5, Pentium® Il
A Microprocessor Pentium®Il

@

Pentium®

: 32GHz 1.7 GHz
266 GHz 291,000,000 55,000,000

582,000,000 65nm s
651
1960 1965 o
o o — 820,000,000 95""; 4 ‘2971 /000,000
o 1 { 4500 65nm
N [=
66 Mz 25 MHz 6 MHz
3,100,000 1,200,000 134,000
0.8 im 1.5u
5 MHz 5 Mriz
_291000 29:000
3u 3u

15 GHz
42,000,000

N 10
1GHz

220,000,000
0.13p

500-800 KHz
3:500
10

=t
2 MHz

4,500
6u

500 MHz
9,500,000
0.180

300 MHz
7,500,000
0.25u

200 MHz
5,500,000
0.6p

108 KHz
2,300
10u

Photo Credit: Intel

Bell’s Law: A new computer class every decade

“Roughly every decade a new,
lower priced computer class
forms based on a new By GORDON BELL

programming p atjorm, BELL’S LAW FOR THE
reszllfgggl;’na:edwl utse:zgf: i]e;vd BIRTH AND DEATH OF Q‘ 5

the establishment of a new COMPUTER CLASSES

industry, ” A theory of the computers evolution.

In the early 1950s, a person could walk inside a computer and by 2010 a
single computer (or “cdluster) with millions of processors will have
expanded to the size of a building, More importantly, computers are begin-

- Gordon Bell [1972,2008] ning t0 “wall” inside of us. These ends of the compuring spectrum ilus-
trate the vast dynamic range in computing power, size, cost, land other
factors for early 21st century computer dlasses.

A computer class is a set of computers in a particular price fange with
unique or similar programming environments (such as Limux, OS/360,
Palm, Symbian, Windows) that support a variety of applications that com-
municate with people and/or other systems. A new computer class forms
and approximately doubles each decade, establishing a new industry. A
class may be the consequence and combination of a new platform with a
new programming environment, a new network, and new interface with
people and/or other information processing systems.

86 juruary 2008/¥el $1, N0 | COMMUNICATIONS OF THE ACM

What is driving Bell’s Law?

Technology Scaling

e Moore’s Law

- Made transistors cheap

Dennard’s Scaling

- Made them fast
- And low-power

Result

- Holding #T’s constant
« Exponentially lower cost
« Exponentially lower power
- Small, cheap & low-power
e Microcontrollers
e Memory
» Radios

, V
R Vilk

Technology Innovations
e« MEMS technology

- Micro-fabricated sensors

New memories

- New cell structures (11T)

- New tech (FeERAM, FinFET)
Near-threshold computing
- Minimize active power

- Minimize static power

New wireless systems
- Radio architectures
- Modulation schemes

Energy harvesting

, V
R Vilk

Why study 32-bit MCUs and FPGAs?

, V
R Vilk

What differentiates these
products from one another?

FPGA Microprocessor

MPU

Instruction address Instruction data

Instruction
pipeline

Interrupt address Read register

Address register

ALU bus

32-hit

register bank
(17 registers)

Write register Read register

Data bus Data address Data bus

The Cortex M3's Thumbnail architecture looks like a conventional Arm processor.The differences are found
in the Harvard architecture and the instruction decode that handles only Thumb and Thumb 2 instructions.

A

ik Vil

I/0 block

X3 /
FPGA TIY
e 4
T T —3——1e
T T . -
x I'l 5/. 'zz/- X X X X
L 5 O 50Tk
Interconnection switches x
1/0 block I - T x
D | I XX XX /2 } x X
- A section of a programmed FPGA

32019 O/I

General structure of an FPGA

MCU-32 and PLDs are tied in embedded market share

A

Vil

100%

90%

80%

70%

60%

50%

% of Total Sum of DATA

40%

30%

20%

10%

1997

Source: iSuppli

1998

1999

2000

2001

2002

2003

2004

Year

2005

2006

2007

2008

2009

2010

2011

0% \ \ \ | \ \ i i i \ \ \ | | \ |

2012

Device (group)

B roo

B 32sitmcu

Major elements of an Instruction Set Architecture “MicHIGAN |
(registers, memory, word size, endianess, conditions, instructions, addressing modes) Vil
32-bits 32-bits
RO < 1 I OxFFFFFFFF
R1 I System
R2 Private peripheral bus - External OxEO100000
0xE0040000
Ei mov r‘e, #1 Private peripheral bus - Internal OXE0000000
R5 External device 1.0GB
Es 1d r‘l) [r‘@, #5] 0xA0000000
R8 External RAM 1.0GB
RO ri=mem((re)+5)
R 1 0 0x60000000
R11 Peripheral ~ 0.5GB
R12 bne 100p 0x40000000
R13 (SP) rapy 0GB
R14 (LR) 0x20000000
R15 (PC subs r2 9 #1
PSR Code 0.5GB
0x00000000
Endigness Endianess
31 30 29 28 27 26 \ 4 0

N|Z|C|V|[Q RESERVED

The endianess religious war: 284 years and counting! R

Vi

e Modern version e Little-Endian

- Danny Cohen - LSB is at lower address

- |IEEE Computer, v14, #10 G T

— Publ‘lshed]n 1981 uint8_ t a = 1; ;)_(;;;; ;1_;;_;;_;;

uint8_t b = 2;

- Satire on CS religious War | iincs: « - oxssssers. | oxco0s 75 56 34 12
o Historical Inspiration e Big-Endian

- Jonathan Swift | - MSB is at lower address

a Memory Value

Offset (LSB) (MSB)

- Gulliver's Travels

- Published in 1726 e oY 0x0000 01 02 00 FF
. . uintlé_t c = 255; // 0x00
- Satire on Henry-VIII’S Spl]t uint;g:t d = 0iiz345678; " 0x0004 12 34 56 78

with the Church

« Now a major motion picture!

Addressing: Big Endian vs Little Endian (370 slide) Cicrioan
Vil

e Endian-ness: ordering of bytes within a word

- Little - increasing numeric significance with increasing
memory addresses

- Big - The opposite, most significant byte first
- MIPS is big endian, x86 is little endian

Register Register
Memory 0OAOBOCOD OAOBOCOD Memory
a O.A - —>» q:10D
a+1:|0B | -« > a+1:/0C
a+2:|0C | = —>» a+2:|0B
a+3:10D | = > a+3:/0A
. Big-endian Little-endian :

Instruction encoding m.v.

 Instructions are encoded in machine language opcodes

e Sometimes
- Necessary to hand generate opcodes
- Necessary to verify assembled code is correct

e How?
Instructions Register Value Memory Value
movs ro, #10 001|00|000|00001010
Pa 20 60 21
movs ri, #0 001|00|001| 00000000
Encoding T1 All versions of the Thumb ISA.
5 MOVS <Rd>,#<imm8> Qutside IT block.
< MOV<c> <Rd>,#<imm8> Inside IT block.
'; 1514131211109 8 7 6 5 4 3 210
=| |00 1|0 0| Rd immS§
X
< d = UInt(Rd); setflags = !InITBlock(); imm32 = ZeroExtend(imm8, 32); carry = APSR.C;

Assembly example S
"\{ 1
data:

.byte 0x12, 20, 0x20, -1

func:

mov r0, #O0

mov r4d, #0

movw rl, #:lowerl6:data

movt rl, #:upperl6:data
top: 1drb r2, [rl],1

add r4, rd4, r2

add r0, r0, #1

cmp r0, #4

bne top

An ISA defines the hardware/software interface ETr

R Vilk

A “contract” between architects and programmers
Register set

Instruction set

- Addressing modes
- Word size

- Data formats

- Operating modes
- Condition codes

Calling conventions
- Really not part of the ISA (usually)
- Rather part of the ABI

- But the ISA often provides meaningful support.

ARM Architecture roadmap Cicrioan
"{

{

ARM7TDMI ARM926EJ-S ARM1136JF-S Cortex-A8/R4/M3/M1
ARM922T ARM946E-S ARM1176JZF-S Thumb-2
Thumb ARM966E-S ARM11 MPCore .
instruction set Improved SIMD Instructions Extensions:
ARM/Thumb v/A (applications) —NEON

Interworking Unaligned data support

v7/R (real time) — HW Divide

VM (microcontroller) — HW
Divide and Thumb-2 only

Extensions:
Thumb-2 (6T2)
TrustZone (6Z2)
Multicore (6K)

DSP instructions

Extensions:
Jazelle (5TEJ)

ARM Cortex-M3 ISA ETr
Vil

Instruction Set Register Set Address Space
=5 OXxFFFFFFFF
System
ADD Rd, Rn, <op2> R1 : ' 0xE0100000
R2 Prl'vate perl.pheral bus - External OXE0040000
R3 Private peripheral bus - Internal OXE0000000
R4
R5 External device 1.0GB
R6 0xA0000000
. R7
BranCh] ng R8 External RAM 1.0GB
Data processing R9 R
Load / Sto re 21? Peripheral 0.5GB
Exceptions R12 0x40000000
Miscellaneous R13 (SP) sRAM 0508
R14 (LR) 0x20000000
R15 (PC) Code 0.5GB
xPSR 0x00000000

32-bits 32-bits
C—

Endianess Endianess

Addressing Modes (again) R
Vil

o Offset Addressing
- Offset is added or subtracted from base register
- Result used as effective address for memory access
- [<Rn>, <offset>]

e Pre-indexed Addressing
Offset is applied to base register
Result used as effective address for memory access
Result written back into base register
[<Rn>, <offset>]!
e Post-indexed Addressing
- The address from the base register is used as the EA
- The offset is applied to the base and then written back
- [<Rn>], <offset>

Application Program Status Register (APSR) ey

31 30 29 28 27 26 0

N|Z|C|IV(Q RESERVED

APSR but fields are in the following two categories:

. Reserved bits are allocated to system features or are available for future expansion. Further
information on currently allocated reserved bits 1s available in The special-purpose program status
registers (xPSR) on page B1-8. Application level software must ignore values read from reserved bits,
and preserve their value on a write. The bits are defined as UNK/SBZP.

. Flags that can be set by many instructions:

N, bit [31] Negative condition code flag. Set to bit [31] of the result of the instruction. If the result
1s regarded as a two's complement signed integer. then N == 1 if the result is negative and
N = 0 1f 1t 15 positive or zero.

Z, bit [30] Zero condition code flag. Set to 1 if the result of the instruction is zero, and to 0 otherwise.
A result of zero often indicates an equal result from a companson.

C, bit [29] Carry condition code flag. Set to 1 if the instruction results in a carry condition, for
example an unsigned overflow on an addition.

V. bit [28] Overflow condition code flag. Set to 1 if the instruction results in an overflow condition.
for example a signed overflow on an addition.

Q, bit [27] Set to 1 if an SSAT or USAT instruction changes (saturates) the input value for the signed or
unsigned range of the result.

£y
Register | Synonym | Special Role in the procedure call standard
r1s PC The Program Counter.
ri4 LR The Link Register.
r13 SP The Stack Pointer.
r12 IP The Intra-Procedure-call scratch register.
ri1 v8 Variable-register 8.
r10 v7 Variable-register 7.
o 2 | Piatorm register.
R The meaning of this register is defined by the platform standard.
r8 v5 Variable-register 5.
r7 v4 Variable register 4.
ré v3 Variable register 3.
s v2 Variable register 2.
r4 vi Variable register 1.
r3 a4 Argument / scratch register 4.
r2 a3 Argument / scratch register 3.
r1 a2 Argument / result / scratch register 2.
r0 al Argument / result / scratch register 1.

- e s -~ o~ - P e

ABI quote B

R Vilk

e A subroutine must preserve the contents of the
registers r4-r8, r10, r11 and SP (and r9 in PCS
variants that designate r9 as vé6).

ABI Basic Rules ETr
Vil

1. A subroutine must preserve the contents of the
registers r4-11 and SP

- Let’s be careful with r9 though.

2. Arguments are passed though r0 to r3

- If we need more, we put a pointer into memory in one
of the registers.

« We’ll worry about that later.

3. Return value is placed in r0
- r0 and r1 if 64-bits.

4. Allocate space on stack as needed. Use it as
needed.

- Put it back when done...
- Keep word aligned.

Other useful factoids ETr

R Vilk

o Stack grows down.
- And pointed to by “sp”

e Address we need to go back to in “lr”

And useful things for the example

e Assembly instructions
- add adds two values
- mul multiplies two values
- bx branch to register

Memory-mapped I/0 S

R Vilk

e The idea is really simple

- Instead of real memory at a given memory address,
have an 1/0 device respond.

e Huh?

e Example:

- Let’s say we want to have an LED turn on if we write a
“1” to memory location 5.

- Further, let’s have a button we can read (pushed or
unpushed) by reading address 4.

e If pushed, it returns a 1.
e If not pushed, it returns a 0.

Now... oy

R Vilk

e How do you get that to happen?
- We could just say “magic” but that’s not very helpful.

- Let’s start by detailing a simple bus and hooking
hardware up to it.

e We’ll work on a real bus next time!

Basic example B

R Vilk

e Discuss a basic bus protocol
- Asynchronous (no clock)
- Initiator and Target
- REQ#, ACK#, Data[7:0], ADS[7:0], CMD
e CMD=0 is read, CMD=1 is write.
o REQ# low means initiator is requesting something.
o ACK# low means target has done its job.

A read transaction

, V
R Vilk

e Say initiator wants to read location 0x24

Initiator sets ADS=0x24, CMD=0.

Initiator then sets REQ# to low. (why do we need a
delay? How much of a delay?)

Target sees read request.

Target drives data onto data bus.

Target then sets ACK# to low.

Initiator grabs the data from the data bus.

Initiator sets REQ# to high, stops driving ADS and
CMD

Target stops driving data, sets ACK# to high
terminating the transaction

Read transaction

, V
R Vilk

ADS[7:0] 22) 0x24 X722

CMD A

Data[7:0] 27 0x55 99

REQ#

ACK# \ —
ABCD E HI

A write transaction IM

(write OxF4 to location 0x31) e

- Initiator sets ADS=0x31, CMD=1, Data=0xF4
- Initiator then sets REQ# to low.
- Target sees write request.

- Target reads data from data bus. (Just has to store in a register,
need not write all the way to memory!)

- Target then sets ACK# to low.
- Initiator sets REQ# to high & stops driving other lines.
- Target sets ACK# to high terminating the transaction

The push-button

(if ADS=0x04 write 0 or 1 depending on
buttan)

Button (0 or 1)

, V
R Vilk

ACK#

The push-button
(if ADS=0x04 write 0 or 1 depending on Vil

button)

ADS[7]
ADS[6]
ADSI[5]
ADS[4]
ADSI[3]
ADS|[2]
ADS[1]
ADSI[0]
REQ#

P

Data| 7]

Button (0 or 1) |

vrevYYYy

D.élta[O]

Delay —— ACK#

What about
CMD?

The LED

(1 bit reg written by LSB of address

0x05)

ADS[7]

ADS[6]

ADS[5]

ADS[4]

ADS[3]

ADS[2]

ADS[1]

ADS[0]

Do

REQ#

DATA[7]
DATA[6]
DATA[5]
DATA[4]
DATA[3]

DATA

3
DATA[2]
%]

DATA[O

A

Vil

Delay

ACK#

Flip-flop
which controls
LED

Advanced Microcontroller Bus Architecture (AMBA) Vil
- Advanced High-performance Bus (AHB)

- Advanced Peripheral Bus (APB)

High-performance High-bandwidth

ARM processor on-chip RAM
B UART Timer
High-bandwidth AHB T APB
Memory Interface D
G
E Keypad PIO
DMA bus
master AHB to APB Bridge
AHB APB
e High performance e Low power
e Pipelined operation e Latched address/control
e Burst transfers e Simple interface
e Multiple bus masters e Suitable of many

Split transactions peripherals

Actel SmartFusion system/bus architecture

0

Bus terminology S

R Vilk

e Any given transaction have an “initiator” and
“target”

e Any device capable of being an initiator is said to
be a “bus master”

- In many cases there is only one bus master (single
master vs. multi-master).

e A device that can only be a target is said to be a
slave device.

e Some wires might be shared among all devices
while others might be point-to-point connections
(generally connecting the master to each
target).

Driving shared wires Crcrican
Vil

e It is commonly the case that some shared wires
might have more than one potential device that

needs to drive them.

- For example there might be a shared data bus that is
used by the targets and the initiator. We saw this in
the simple bus.

- In that case, we need a way to allow one device to
control the wires while the others “stay out of the
way”’

e Most common solutions are:
- using tri-state drivers (so only one device is
driving the bus at a time)
- using open-collector connections (so if any
device drives a 0 there is a 0 on the bus
otherwise thereisa 1)

Or just say no to shared wires. B

R Vilk

e Another option is to not share wires that could
be driven by more than one device...
- This can be really expensive.
« Each target device would need its own data bus.
e That’s a LOT of wires!

- Not doable when connecting chips on a PCB as you are
paying for each pin.

- Quite doable (though not pretty) inside of a chip.

APB is a fairly simple bus desighed to be easy to Crcrican
work with. .
e Low-cost

e Low-power

e Low-complexity

e Low-bandwidth

e Non-pipelined

« ldeal for peripherals

APB bus signals Crcrioan |
Vil
® PCLK TO T1 T2 1K) T4
- Clock w' e
) —‘-U ! : i
AR e |
- ress on bus e | 7) —
@WDATE) 7 S X .
° PWRITE PREADYE 17 Q_,
- 1=Write, 0=Read
« PWDATA

- Data written to the
|/0 device.
Supplied by the
bus master/
processor.

APB bus signals

o PSEL

- Asserted if the current
bus transaction is
targeted to this device

« PENABLE

- High during entire
transaction other than
the first cycle.

« PREADY

- Driven by target.
Similar to our #ACK.
Indicates if the target
is ready to do
transaction.

Each target has it’s
own PREADY

R Vilk

T0 T1 T2 T4

PCLK [| [|
PADDR | i Addr 1

PWRITE: i Jf . . .

S i | i

PWDATAE XX D:ata1 |

PREADY I] f“ i

So what’s happening here?

Vil

T0 T1 T2 T3 T4
PCLK | [sq
PADDR ! WX I Addr 1| i
PWRITE |] i i i
ST s e |
PENABLE ! i | H_f'“_‘i
PWDATA | -xx Hata 1 'x:x g
i S— | —

A read transfer with wait states RIS

R Vilk

Setup phase begins
with this rising edge

!

TO T1 T2 T3 T4 T5
PCLK| |

L,

PADDR; Addr 1 i

PWRITE| \\
[

PSEL!

PENABLE | [

PRDATA) : ! :)| Data 1

AL

PREADY \\ L/

Setup Wait Wait Access
Phase State State Phase

Interrupts S
Vil

Interrupt (a.k.a. exception or trap):

* An event that causes the CPU to stop executing the
current program and begin executing a special piece of
code called an interrupt handler or interrupt service
routine (ISR). Typically, the ISR does some work and
then resumes the interrupted program.

Interrupts are really glorified procedure calls, except that

they:

e can occur between any two instructions

e are transparent to the running program (usually)

e are not explicitly requested by the program
(typically)

e call a procedure at an address determined by the
type of interrupt, not the program

Two basic types of interrupts B

(1/2) V..

e Those caused by an instruction
- Examples:
e TLB miss
e [llegal/unimplemented instruction
edivbyO
- Names:
e Trap, exception

Two basic types of interrupts B

(2/2) v,

e Those caused by the external world
- External device

Reset button

Timer expires

Power failure

- System error

e Names:
- interrupt, external interrupt

How it works .y

R Vilk

e Something tells the processor core there is an
interrupt

e Core transfers control to code that needs to be
executed

e Said code “returns” to old program

e Much harder then it looks.
- Why?

... is in the details .y
Vi

e How do you figure out where to branch to?

« How do you ensure that you can get back to
where you started?

e Don’t we have a pipeline? What about partially
executed instructions?

 What if we get an interrupt while we are
processing our interrupt?

e What if we are in a “critical section?”

Where SWTCHIGAN |
Vil

e If you know what caused the interrupt
then you want to jump to the code that

handles that interrupt.

- If you number the possible interrupt cases,
and an interrupt comes in, you can just
branch to a location, using that number as an
offset (this is a branch table)

- If you don’t have the number, you need to
poll all possible sources of the interrupt to

see who caused it.
e Then you branch to the right code

Enabling and disabling interrupt sources

e Interrupt Set Enable and Clear Enable
- OxEOOOE100-0xEOOOE11C, OXEOOOE180-0xEOOOE19C

OxEOOOE100 SETENAO R/W 0 Enable for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)

bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

OxEOOOE180 CLRENAO R/W 0 Clear enable for external interrupt #0-31
bit[0] for interrupt #0
bit[1] for interrupt #1

bit[31] for interrupt #31
Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current enable status

Polling-Driven Application S

R Vilk

Recall pushbutton-LED example

mov ro, #0x4 % PBS MMIO address
mov r1, #0x5 % LED MMIO address
loop: ldr r2, [r0, #0] % Read value from switch [1 cycle]
str r2 [r1, #0] % Save value to LED [1 cycle]
b loop % Repeat these steps [1 cycle]

This is a polling-driven application
Software constantly loops, polling and (re)acting
However, it doesn’t do anything else useful!

The Problem with Polling B

R Vilk

« If we want to do other work, we might call a routine:

mov ro, #0x4 % PBS MMIO address
mov r1, #0x5 % LED MMIO address

loop: ldr r2, [r0, #0] % Read value from switch [1 cycle]
str r2 [r1, #0] % Save value to LED [1 cycle]
bl do_some_work % Do some other work [100 cycles]
b loop % Repeat these steps [1 cycle]

e Polling affects the responsiveness of PBS < LED path!
-Whenever we’re “doing some work,” we not polling PBS
-And the more “other work” we do, the worse the latency gets

e And it affects the efficiency of the processor
-The ldr/str values don’t change very either much
-So, the processor is mostly wasting CPU cycles (and energy)

Polling trades off efficiency and responsiveness Crcrioan |
Vil
mov ro, #0x4 % PBS MMIO address
mov r1, #0x5 % LED MMIO address
loop: ldr r2, [r0, #0] % Read value from switch [1 cycle]
str r2 [r1, #0] % Save value to LED [1 cycle]
bl do_some_work % Do some other work [100 cycles]
b loop % Repeat these steps [1 cycle]

Efficiency

- Minimizing useless work

- Maximizing useful work

- Saving cycles & energy
Responsiveness

- Minimizing latency

- Tight event-action coupling
Can we do better? Yes!

Efficiency
[

Responsiveness

Level-triggered interrupts

, V
R Vilk

e Basics:

Signaled by asserting a line low or high

Interrupting device drives line low or high and holds it there until
it is serviced

Device deasserts when directed to or after serviced
e Requires some way to tell it to stop.

e Sharing?

Can share the line among multiple devices
Often open-collector or HiZ
o Active devices assert the line, inactive devices let the line float
Easy to share line w/o losing interrupts
But servicing increases CPU load
And requires CPU to keep cycling through to check
Different ISR costs suggests careful ordering of ISR checks
Can’t detect a new interrupt when one is already asserted

Edge-triggered interrupts R

R Vilk

» Basics:
- Signaled by a level *transition* (e.g. rising/falling edge)
- Interrupting device drives a pulse onto INT line

e Sharing *is* possible
- INT line has a pull up and all devices are OC/QOD.
- Could we miss an interrupt? Maybe...if close in time
- What happens if interrupts merge? Need one more ISR pass
- Easy to detect "new interrupts”
- Pitfalls: spurious edges, missed edges

e Source of "lockups” in early computers

Basic interrupt processing

e Stacking

- Automatically by CPU
- Maintains ABI semantics
- ISRs can be C functions

e Vector Fetch
- We’ll see this next

o Exit: update of SP, LR, PC

Vil
The stack (PSP or MSP)

i)
Higher Addresses

Previous
SP =——> } stacked

data
XPSR

PC

LR

R12

R3

R2

R1

RO

Free
} stack
space

Lower Addresses
4

NVIC/Interrupt configuration registers

e ICTR
e ISER
e ICER
e ISPR
« ICPR
« |IABR
e IPR

e AIRC

, V
R Vilk

Interrupt Controller Type Register (RW)
Interrupt Set-Enable Register (RW)
Interrupt Clear-Enable Register (RW)
Interrupt Set-Pending Register (RW)
Interrupt Clear-Pending Register (RW)
Interrupt Active Bit Register (RO)
Interrupt Priority Register (RW)
Application Interrupt and Reset Control

Enabling and disabling interrupt sources ST e
"{

e Interrupt Set Enable and Clear Enable
- OxEOOOE100-0xEOOOE11C, OXEOOOE180-0xEOOOE19C

OxEOOOE100 SETENAO R/W 0 Enable for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)

bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

OxEOOOE180 CLRENAO R/W 0 Clear enable for external interrupt #0-31
bit[0] for interrupt #0
bit[1] for interrupt #1

bit[31] for interrupt #31
Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current enable status

Configuring the NVIC (2)

, V
R Vilk

e Set Pending & Clear Pending
- OxEOOOE200-0xEOOOE21C, OXxEOOOE280-0xEOOOE29C

OxEOOOE200

SETPENDO

R/W

Pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)
bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

OxEOOOE280

CLRPENDO

R/W

Clear pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)
bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)

Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current pending status

Configuring the NVIC (3) e

Vil
e Interrupt Active Status Register
- OxEOOOE300-0xEOOOE31C
Address Name Type Reset Value Description
OxEOOOE300 ACTIVEO R 0 Active status for external interrupt #0-31

bit[0] for interrupt #0
bit[1] for interrupt #1

bit[31] for interrupt #31

OxEOOOE304 ACTIVE1 R 0 Active status for external interrupt #32-63

Pending interrupts

f Hardware cleared interrupt request

Interrupt
Request \
Interrupt
Pending Status
/ Handler Mode
Thread
Processor Mode

Mode

The normal case. Once Interrupt request is seen, processor puts it in
“pending” state even if hardware drops the request.
IPS is cleared by the hardware once we jump to the ISR.

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4

, V
R Vilk

, V
R Vilk

Interrupt
Request \
Interrupt
Pending Status r
Pending status
cleared by software
Thread

Processor Mode

Mode

In this case, the processor never took the interrupt because we cleared the
IPS by hand (via a memory-mapped I/0 register)

Active Status set during handler execution A
Vil

Interrupt request
x~~ cleared by software

Interrupt

Request \

Interrupt
Pending Status

Interrupt
Active Status

|

Handler Mode — Interrupt returned

Processor Thread
Mode Mode

m A
Interrupt Request not Cleared m.v.-@

Interrupt request stays active

Interrupt

Request \

Interrupt
Pending Status

Interrupt
Active Status

Handler Mode

Processor Thread
Mode Mode

Answer

Interrupt
request

Interrupt
pending status

Interrupt
active status

Processor

mode

[MICHIGAN |
Vil

Interrupt request stay active

)

Thread
mode

Interrupt return P
Handler mode \y

Vo

Interrupt reentered

Interrupt pulses before entering ISR e

R Vilk

Multiple interrupt pulses
before entering ISR

Interrupt

Request \

Interrupt
Pending Status

Interrupt ?
Active Status

Processor
Mode

Answer

Interrupt
request

Interrupt
pending status

Interrupt
active status

Processor
mode

Multiple interrupt pulses
before entering ISR

\

Thread
mode

Handler mode

/ Interrupt return \

[MICHIGAN |
Vil

New Interrupt Request after Pending Cleared RIS
vl

Interrupt request
pulsed again

Interrupt

Request \

Interrupt
Pending Status

Interrupt ®
Active Status

Handler Mode

Thread

Processor Mode
Mode

Interrupt Priority B

R Vilk

What do we do if several interrupts arrive simultaneously?
NVIC allows priorities for (almost) every interrupt
3 fixed highest priorities, up to 256 programmable priorities

- 128 preemption levels
- Not all priorities have to be implemented by a vendor

Bit/ |Bité6é |[Bit5 |Bit4 |Bit3 |Bit2 |[Bit1 |BitO

Implemented Not implemented, read as zero

- SmartFusion has 32 priority levels, i.e. 0x00, 0x08, ... , OxF8

Higher priority interrupts can pre-empt lower priorities

Priority can be sub-divided into priority groups
- Splits priority register into two halves, preempt priority & subpriority
- Preempt priority: indicates if an interrupt can preempt another

- Subpriority: used to determine which is served first if two interrupts of
same group arrive concurrently

Interrupt Priority (2)

e Interrupt priority level registers
- Range: OxEOOOE400 to OXxEOOOE4EF

, V
R Vilk

Address Name Type Reset Value Description

OxEOOOE400 PRI_O R/W 0 (8-bit) Priority-level external interrupt #0

OxEOOOE401 PRI_1 R/W 0 (8-bit) Priority-level external interrupt #1

OxEOOOE41F PRI_31 R/W 0 (8-bit) Priority-level external interrupt #31

Preemption Priority and Subpriority

Application Interrupt and Reset Control Register (Address OXEOOOEDOC)

Priority Group Preempt Priority Field Subpriority Field
0 Bit [7:1] Bit [0]

1 Bit [7:2] Bit [1:0]

2 Bit [7:3] Bit [2:0]

3 Bit [7:4] Bit [3:0]

- Bit [7:5] Bit [4:0]

5 Bit [7:6] Bit [5:0]

6 Bit [7] Bit [6:0]

7 None Bit [7:0]

Bits Name Type Reset Description
Value

31:16 VECTKEY R/W - Access key; 0xOSFA must be written to this field to write
to this register, otherwise the write will be ignored; the
read-back value of the upper half word is 0xFAOS

15 ENDIANNESS R - Indicates endianness for data: 1 for big endian (BE8)
and 0 for little endian; this can only change after a reset

10:8 PRIGROUP R/W 0 Priority group

2 SYSRESETREQ w - Requests chip control logic to generate a reset

1 VECTCLRACTIVE | W - Clears all active state information for exceptions;
typically used in debug or OS to allow system to recover
from system error (Reset is safer)

0 VECTRESET wW - Resets the Cortex-M3 processor (except debug logic),
but this will not reset circuits outside the processor

, V
R Vilk

PRIMASK, FAULTMASK, and BASEPRI registers i

« What if we quickly want to disable all interrupts?

« Write 1 into PRIMASK to disable all interrupts except NMI
- MOV RO, #1
- MSR PRIMASK, RO ; MSR and MRS are special instructions

o Write 0 into PRIMASK to enable all interrupts

e FAULTMASK is the same as PRIMASK, but it also blocks
hard faults (priority = -1)

« What if we want to disable all interrupts below a certain
priority?
o Write priority into BASEPRI register

- MOV RO, #0x60
- MSR BASEPRI, RO

Masking

B1.4.3 The special-purpose mask registers

, V
R Vilk

There are three special-purpose registers which are used for the purpose of priority boosting. Their function
1s explained in detail in Execution priority and priority boosting within the core on page B1-18:

All mask registers are cleared on reset. All unprivileged writes are ignored.

The formats of the mask registers are illustrated in Table B1-4.

the exception mask register (PRIMASK) which has a 1-bit value
the base priority mask (BASEPRI) which has an 8-bit value

the fault mask (FAULTMASK) which has a 1-bit value.

Table B1-4 The special-purpose mask registers

31 0
PRIMASK RESERVED PM
FAULTMASK RESERVED FM
BASEPRI RESERVED BASEPRI

Interrupt Service Routines B

R Vilk

Automatic saving of registers upon exception
- PC, PSR, RO-R3, R12, LR
- This occurs over data bus

While data bus busy, fetch exception vector
- i.e. target address of exception handler
- This occurs over instruction bus

e Update SP to new location

« Update IPSR (low part of xPSR) with exception new #

e Set PC to vector handler

 Update LR to special value EXC_RETURN

o Several other NVIC registers gets updated

e Latency can be as short as 12 cycles (w/o0 mem delays)

The xPSR register layout

, V
R Vilk

The APSR. IPSR and EPSR registers are allocated as mutually exclusive bitfields within a 32-bit register.
The combination of the APSR. IPSR and EPSR registers is referred to as the xPSR register.

31 30 29 28 27 26 25 24 23

Table B1-2 The xPSR register layout

APSR

N

Z

C

\f

Q

IPSR

0 or Exception Number

EPSR

[CTIT

ICLIT

ARM interrupt summary S

R Vilk

1. We’ve got a bunch of memory-mapped registers
that control things (NVIC)

- Enable/disable individual interrupts
- Set/clear pending
- Interrupt priority and preemption

2. We’ve got to understand how the hardware
interrupt lines interact with the NVIC

3. And how we figure out where to set the PC to
point to for a given interrupt source.

1. NVIC registers (example)

, V
R Vilk

e Set Pending & Clear Pending
- OxEOOOE200-0xEOOOE21C, OXEOOOE280-0xEOOOE29C

OxEOOOE200

SETPENDO

R/W

Pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)
bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)
Write 1 to set bit to 1; write 0 has no effect

Read value indicates the current status

OxEOOOE280

CLRPENDO

R/W

Clear pending for external interrupt #0-31
bit[0] for interrupt #0 (exception #16)
bit[1] for interrupt #1 (exception #17)

bit[31] for interrupt #31 (exception #47)

Write 1 to clear bit to 0; write 0 has no effect

Read value indicates the current pending status

1. More registers (example)

e Interrupt Priority Level Registers

- OxEOOOE400-OxEOOOE4EF

, V
R Vilk

Address Name Type Reset Value Description

OxEOOOE400 PRI_O R/W 0 (8-bit) Priority-level external interrupt #0

OxEOOOE401 PRI_1 R/W 0 (8-bit) Priority-level external interrupt #1

OxEOOOE41F PRI_31 R/W 0 (8-bit) Priority-level external interrupt #31

1. Yet another part of the NVIC registers!

Application Interrupt and Reset Control Register (Address OXEOOOEDOC)

Priority Group Preempt Priority Field Subpriority Field
0 Bit [7:1] Bit [0]

1 Bit [7:2] Bit [1:0]

2 Bit [7:3] Bit [2:0]

3 Bit [7:4] Bit [3:0]

- Bit [7:5] Bit [4:0]

5 Bit [7:6] Bit [5:0]

6 Bit [7] Bit [6:0]

7 None Bit [7:0]

Bits Name Type Reset Description
Value

31:16 VECTKEY R/W - Access key; 0xOSFA must be written to this field to write
to this register, otherwise the write will be ignored; the
read-back value of the upper half word is 0xFAOS

15 ENDIANNESS R - Indicates endianness for data: 1 for big endian (BE8)
and 0 for little endian; this can only change after a reset

10:8 PRIGROUP R/W 0 Priority group

2 SYSRESETREQ w - Requests chip control logic to generate a reset

1 VECTCLRACTIVE | W - Clears all active state information for exceptions;
typically used in debug or OS to allow system to recover
from system error (Reset is safer)

0 VECTRESET \%\% - Resets the Cortex-M3 processor (except debug logic),
but this will not reset circuits outside the processor

, V
R Vilk

2. How external lines interact with the NVIC

f Hardware cleared interrupt request

Interrupt
Request \
Interrupt
Pending Status
/ Handler Mode
Thread
Processor Mode

Mode

The normal case. Once Interrupt request is seen, processor puts it in
“pending” state even if hardware drops the request.
IPS is cleared by the hardware once we jump to the ISR.

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4

, V
R Vilk

3. How the hardware figures out what to set the PC to I

g pfnVectors:

.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word

_estack

Reset Handler

NMI Handler
HardFault Handler
MemManage Handler
BusFault Handler
UsageFault Handler
0

0

0

0

SVC Handler
DebugMon Handler
0

PendSV_Handler
SysTick Handler

WdogWakeup IRQHandler

®

Table 7.1 List of System Exceptions

Exception

Number Exception Type Priority Description

1 Reset -3 (Highest) Reset

2 NMI -2 Nonmaskable interrupt (external NMI input)

3 Hard fault -1 All fault conditions if the corresponding fault
handler is not enabled

4 MemManage fault Programmable Memory management fault; Memory
Protection Unit (MPU) violation or access
to illegal locations

5 Bus fault Programmable Bus error; occurs when Advanced High-
Performance Bus (AHB) interface receives an
error response from a bus slave (also called
prefetch abort if it is an instruction fetch or
data abort if it is a data access)

6 Usage fault Programmable Exceptions resulting from program error or
trying to access coprocessor (the Cortex-M3
does not support a coprocessor)

7-10 Reserved NA -

11 SvVC Programmable Supervisor Call

12 Debug monitor Programmable Debug monitor (breakpoints, watchpoints, or
external debug requests)

13 Reserved NA -

14 PendSV Programmable Pendable Service Call

15 SYSTICK Programmable System Tick Timer

Table 7.2 List of External Interrupts

Exception Number Exception Type Priority

16 External Interrupt #0 Programmable

17 External Interrupt #1 Programmable

255 External Interrupt #239 Programmable

BrownOut 1 5V IRQHandler
BrownOut 3 3V IRQHandler
ceteteeeen.... (theycontinue)

What happens when we return from an ISR? B

R Vilk

e Interrupt exiting process
- System restoration needed (different from branch)
- Special LR value could be stored (OxFFFFFFFXx)
e Tail chaining
- When new exception occurs
- But CPU handling another exception of same/higher priority
- New exception will enter pending state
- But will be executed before register unstacking

- Saving unnecessary unstacking/stacking operations
- Can reenter hander in as little as 6 cycles

o Late arrivals (ok, so this is actually on entry)
- When one exception occurs and stacking commences
- Then another exception occurs before stacking completes
- And second exception of higher preempt priority arrives
- The later exception will be processed first

What happens when we return from an ISR? B

R Vilk

e Interrupt exiting process
- System restoration needed (different from branch)
- Special LR value could be stored (OxFFFFFFFXx)

- Walkthrough a few examples, simplified system assumptions:
- 5 Interrupt Levels (0-4)
- 256 Priority Levels (0 Highest, 256 Lowest)

- First time presenting, so errors in the animation are unintentional
but may be present (lets find out together)

Single Interrupt
Vi

Interrupt on
Level 4

HW
SW

v

Execution Time

Priority Table ~ , Pending

0 8 00 0 0 0

1 10

2 5

; ; A Enabled .

4 6 1]1]1]1]1

Base Priority , Active
256 00 0 0 0

Single Interrupt
Vi

Interrupt on
Level 4

HW Stack
SW

v

Execution Time

Priority Table Pending 0
8 0 0 0 O

0
1 10
2 S Enabled
PC 3 3 4 0
PSR 4 6 1 111 1
LR
RO-R3, R12 Base Priority A Active 0

6 0 0 0 0 O

: , ¥V
Single Interrupt
Vil
Interrupt on
Level 4
HW Stack
SW ISR-LVL4

v

Execution Time

Priority Table 5 Pending 0

0 8 00 0 0 0

1 10

2 > Enabled
PC 3 3 4 0
PSR 4 6 11f1]1]1
LR

RO-R3, R12 Base Priority Active 0
ISR-LVL4 6 olololo
Stack

Single Interrupt
Vi

Interrupt on
Level 4 bx Ir

HW Stack
SW ISR-LVL4

v

Execution Time

Priority Table Pending 0

0 8 00 0 0 0
1 10
2 > Enabled
PC 3 3 4 0
PSR 4 6 1 111 1
LR
RO-R3, R12 Base Priority A Active 0
6 1 00 00

Single Interrupt
Vi

Interrupt on
Level 4 bx Ir

HW Stack Unstack
SW ISR-LVL4

v

Execution Time

Priority Table ~ , Pending

0 8 00 0 0 0
1 10
2 5
; ; 4EnabledO
4 6 1 1 1 1 1

Base Priority Active |
g 0J0 0 0 0

Single Interrupt
Vi

Interrupt on
Level 4 bx Ir

HW Stack Unstack

N ISR-LVLA [rogam |

Execution Time

v

Priority Table ~ , Pending

0 8 00 0 0 0

1 10

2 5

; ; A Enabled .

4 6 1]1]1]1]1

Base Priority , Active
256 00 0 0 0

Nested Interrupts B
Vil

- When new exception occurs

- And CPU handling another exception of lower priority
(incoming request is higher priority)

- New exception will interrupt the current ISR
- Will generate a new ISR stack on the stack

Nested Interrupt T

Vil
Interrupt on Interrupt on
Level 4 Level 3
HW Stack \/
SW ISR-LVLA4

v

Execution Time

- Priority Table Pending 0

= 0 8 00 0 0
PSR | 0 0 0 0
IR 10
RO-R3, R12 2 g , Enabled _
ISR-LVL4 3 T
4 6 | N
Stack
Base Priority , Active

6 1 0 0 0 O

Nested Interrupt

HW
SW

[MICHIGAN |
Vil
Interrupt on Interrupt on
Level 4 Level 3
Stack Stack
ISR-LVL4
Execution Time -
Priority Table ndmg
PC . z O/P? oTo] 0
PSR
LR 1 10 \/
RO-R3, R12 2 ; Enabled |
ISR-LVL4 3 SEEEIREE:
4 6 I N N |
Stack
PC .. .
Sp Base Priority , Active
LR 6 1 0000
RO-R4, R12

Nested Interrupt

HW
SW

| MICHIGAN |
Vil
Interrupt on Interrupt on
Level 4 Level 3
Stack Stack
ISR-LVL4 ISR-LVL3
Execution Time -
Priority Table nd1ng

- priorlty ﬂl‘i

PSR 1 8 O O 0 O

LR 10
RO-R3, R12 2 ; Enabled |
ISR-LVL4 3 T1TiT3

Stack 4 6 —

PC Base Priorit tive

PSR ase Priority ﬂﬂkg 0

LR . 1(jo o0
RO-R3, R12 /
ISR-LVL3

Stack

Nested Interrupt

HW
SW

[MICHIGAN
RVilk
Interrupt on Interrupt on
Level 4 Level 3 bx Ir
Stack Stack MUnstack
ISR-LVLA4 ISR-LVL3
Execution Time -
— Priority Table Pending 0
= (1) 8 00000
LR 10
RO-R3, R12 2 ; Enabled |
ISR-LVL4 3 AEIBEEEE
4 6
Stack I
Base Priority 4 (Btive
6 1(0 0 0

N\

[MICHIGAN |
R Vilk

Nested Interrupt
Interrupt on Interrupt on
Level 4 Level 3 bx Ir bx Ir
HW Stack Stack MUnstack
SW ISR-LVL4 ISR-LVL3
Execution Time -
Priority Table Pending 0

0 8 00000

1 10

2 5

] . A Enabled .

4 z 1 1 1 11

Base Priority

256

4Actlve0
00 00 0

N

Tail Chaining R

R Vilk

- When new exception occurs

- But CPU handling another exception of same/higher
priority (incoming request is lower priority)

- New exception will enter pending state

- But will be executed before register unstacking

- Saving unnecessary unstacking/stacking operations
- Can reenter hander in as little as 6 cycles

Tail-Chaining l:v:

Interrupt on Interrupt on

Level 4 Level 1
HW Stack \4
SW ISR-LVL4 |

v

Execution Time

Priority Table ~, Pend:

PC
PSR 0 8 0 0 of 1o
— 1 10
RO-R3, R12 2 - Enabled |
ISR-LVL4 3 2 T
Stack 4 6
Base Priority , Active

6 1 00 0 0

Interrupt on

Level 1 bx Ir

Stack \4

Tail-Chaining
Interrupt on
Level 4
HW
SW

ISR-LVLA4

{ Don’t Unstack J

, V
R Vilk

PC
PSR
LR

RO-R3, R12

B W~ O

Execution Time

Priority Table

8
10
5
3
6

Base Priority

Pending
4 0
000 1 0

A Enabled 0

v

Tail-Chaining =

Interrupt on Interrupt on
Level 4 Level 1 bx Ir

HW Stack
SW ISR LVL4 ISR-LVLI1

v

Execution Time

Priority Table Pending .

PC
PSR 0 8 000 0 0
LR 1 10
RO-R3, R12 2 5 Enabled
ISR-LVLI 3 3 SEEREEEE
Stack 4 6 | L
Base Priority , Active

10 0001 0

Tail-Chaining .ﬁ%

Interrupt on Interrupt on

Level 4 Level 1 bx Ir bx Ir

HW Stack Unstack
SW ISR-LVL4 ISR-LVLI1

v

Execution Time

Priority Table Pending 0

0 8 0000 O

1 10

2 2 Enabled

3 3 0

4 6 1 1 1 1 1

Base Priority , Active
256 000 0 0

Late Arrival

, V
R Vilk

e Late arrivals (ok, so this is actually on entry)

When one exception occurs and stacking commences

Then another exception occurs before stacking
completes

And second exception of higher preempt priority
arrives

The later exception will be processed first

Late Arrival

Vil

Interrupt on Interrupt on
Level 4 Level 3

HW Stack
SW

v

Execution Time

- Priority Table Pending 0

s 0 8
PSR | 1 1 0 0 O
R 10
RO-R3, R12 2 2 Enabled
3 3 4 0
4 6 1f1]1]1]1
Base Priority , Active
256 0000 0

102

Late Arrival . ¥V,
Vi

Interrupt on Interrupt on
Level 4 Level 3 bx Ir

HW Stack
SW ISR-LVL3

v

Execution Time

Priority Table ~ , Pending

- 0 8 1 00 0 0
PSR | 0.0 0
LR 10
RO-R3, R12 2 g Enabled
ISR-LVL3 3 T
6
Stack 4
Base Priority A Active .

3 01 0 0 0

Late Arrival

Interrupt on Interrupt on
Level 4 Level 3 bx Ir bx Ir

HW Stack

Unstack
SW ISR-LVL3 _

Execution Time

- Priority Table Pending .

0 8 00 0 0 0

1 10

2 5

; ; A Enabled .

4 6 1 1 1 1 1

Base Priority , Active
256 O 0 0 0 O

104

Virtual Timers ETr

R Vilk

e You never have enough timers.
— Never.

e So what are we going to do about it?

— How about we handle in software?

Virtual Timers ETr

R Vilk

e Simple idea.
— Maybe we have 10 events we might want to generate.

e Just make a list of them and set the timer to go off for the
first one.

— Do that first task, change the timer to interrupt for
the next task.

I A
Problems? CMICHIGAN |

R Vilk

e Only works for “compare” timer uses.

e Will result in slower ISR response time
— May not care, could just schedule sooner...

Implementation Issues Cicaican
Vil

e Shared user-space/ISR data structure.

— Insertion happens at least some of the time in user
code.

— Deletion happens in ISR.
e We need critical section (disable interrupt)

e How do we deal with our modulo counter?

— That is, the timer wraps around.

— Why is that an issue?
e What functionality would be nice?

— Generally one-shot vs. repeating events

— Might be other things desired though
e What if two events are to happen at the same

time?

— Pick an order, do both...

Implementation Issues (continued) R

R Vilk

e What data structure?
— Data needs be sorted
e |nserting one thing at a time
— We always pop from one end
— But we add in sorted order.

Data structures Iz%nﬁl

R Vilk

typedef struct timer
{

timer handler t handler;

uint32 t time;
uint8 t mode;
timer t* next timer;

} timer t;
timer t* current timer;

void initTimer () {
setupHardwareTimer () ;
initLinkedList ()
current timer = NULL;

}

error_t startTimerOneShot (timer handler t handler, uint32 t t) {
// add handler to linked list and sort it by time
// if this is first element, start hardware timer

}

error t startTimerContinuous (timer handler t handler, uint32 t dt) {
// add handler to linked 1list for (now+dt), set mode to continuous
// if this is first element, start hardware timer

}

error t stopTimer (timer handler t handler) {
// find element for handler and remove it from list

}

Some loose ends...glitches and all that B

R Vilk

Timing delays and propagation B

R Vilk

e Assume
- XOR delay = 0.2ns
- AND delay = 0.1ns

e) >X)) s - OR delay = 0.1 ns
ci A A
y
} e What is the worst
Co .
)_Z case propagation

delay for this
circuit?

Full adder (from Wikipedia)

Glitches

R Vilk

= gy
s= =
hﬁa —
Ny -
D) —i
= =
o0 s
o= o
OO —
2 o
O o -
£8 S
gna
.mw co
Es ©
=S =
26 M
< B o
;80
Ex w
& © (o
S
- 9
2 A pk
5z
=
CA =
g2 o
S=IR=
S B 8 m
o = =
anCU
o O 80
=25 o
5 © o @
S 2o
25 =
T o 9
O s s
o
o O
O

y
z

A
B

T D —

Ci

Full adder (from Wikipedia)

Only selected causality

arrows shown...

Glitching: a summary B

R Vilk

e When input(s) change
- The output can be wrong for a time
- However, that time is bounded

e And more so, the output can change during this
“computation time” even if the output ends up
where it started!

Effect of Glitches ETr
Vil

« Think back to EECS 370.

- Why don’t glitches cause errors?

111 -

=l

SW

EX Mem

So, how can glitches hurt us? ———

| MICHIGAN |
Vil
PRE
« There are a handful of places: = B
- Asynchronous resets BUS
« If you’ve got a flip-flop that has an A | =k
asynchronous reset (or “preset”) you need to CLR
be sure the input can’t glitch. Traditionally, CLR s used
- That pretty much means you need a flip- [0l e reset. "7
flop driving the input (which means you
probably should have used a sync. reset!)
- Clocks " out

cond:]:>_|‘>
« If you are using combinational logic to drive a

clk
clock, you are likely going to get extra clock If clk is high and cond

glitches, you get extra
ed geS . edges!

Design rules ST e

R Vilk

PRE

1. Thou shalt not use asynchronous
resets

2. Thou shalt not drive a clock with
anything other than a clock or
directly off of a flip-flop’s output

in out
cond

clk

Really? Seriously?

, V
R Vilk

e People do use asynchronous resets and clock gating!

- Yep. And people use goto in C programs.

e Sometimes they are the right thing.

- But you have to think really hard about them to insure
that they won’t cause you problems.

- Our “simple” bus used
combinational logic for
the clock

e Works because REQ goes
low only after everything

else has stopped switching

- So no glitch.

e Not fun to reason about...

e Avoid unless you must
- Then think really carefully.

ADS[7
ADS[6
ADS[5

ADS[
ADS[3
ADS[
ADS[
ADS|[
REQ#

-

p
4
—

]
]
]
]
]
]
]
]

2
1
0

DATA[7]

Setup and hold time B

RVilk
Setup, Hold Time

e The idea is simple. t

e ; hd:

- When the clock is changing »_ =
if the data is also changing it - .
I.S hard to tell what the data W//%// s“@c %/////////////
E. D changing E E i D changing

e Hardware can’t always tell

- And you can get meta-stable behavior too (very
unlikely but...)

- S0 we have a “guard band” around the clock rising time
during which we don’t allow the data to change.

e See diagram. We call the time before the clock-
edge “setup time” and the time after “hold time”

y
Device Min | Max | Example: “-:'
DFF: . :
dodoa |1 T as | Fast and slow paths;
e impact of setup and hold time
OR/AND 2ns 6ns
NOT 1ns 3ns
NAND/NOR 2ns 5ns
XOR 3ns ns
— _ -
L >CLKQ0 Qb X
A Do|_D_LD: o G
D_F SCLK Qo———
—
CLK

Assume that the input A is coming from a flip-flop that has the same properties as the flip-flops that
are shown and is clocked by the same clock.

a. Add inverter pairs as needed to the above figure to avoid any “fast path” problems. Dosoin a
way that has least impact on the worst-case delay (as a first priority) and which keeps the
number of inverter pairs needed to a minimum (as a second priority).

b. After you've made your changes in part a, compute the maximum frequency at which this
device can be safely clocked.

So what happens if we violate set-up or hold time? B

R Vilk

o Often just get one of the two values.
- And that often is just fine.
e Consider getting a button press from the user.

o If the button gets pressed at the same time as the
ctocllz edge, we might see the button now or next
clock.

- Either is generally fine when it comes to human
input.
- But bad things could happen.
e The flip-flop’s output might not settle out to a “0” or
a “1 b}
- That could cause later devices to mess up.

e More likely, if that input is going to two places, one
might see a “0” the other a “1”

e Important: don’t feed an async input to multiple
places!

Example e eurem
"\{ 1

« A common thing to do is reset a state machine
using a button.

- User can “reset” the system.
e Because the button transition could violate set-

up or hold time, some state bits of the state

machine might come out of reset at different
times.

- And you quickly end up at a wrong or illegal state.

A AR
So... CMICHIGAN |
Vil

« Dealing with inputs not synchronized to our local clock
is a problem.
- Likely to violate setup or hold time.
e That could lead to things breaking.

e So we need a clock synchronization circuit.
- First flip-flop might have problems.
- Second should be fine.

- Sometimes Use a third if Synchronization Register Chain
really paranoid @ @ laed . a im0 e

« Safety-critical system for exampte: —° @

Clockl

N
———— -
L ———

Clock2

N ————————— -

Figure from , we use the same thing to deal with external inputs too!

Design rules Cicrioan
Vil

3. Thou shalt use a clock
synchronization circuit when
changing clock domains or using
unclocked inputs!

Synchronization Register Chain

S ———————— —,

’ N

/ \

I 1

Data_In B . D) D QF l

/* Synchonization of Asynchronous switch input */ | :
Clockl > : > > |

alwaysQ@ (posedge clk) [[- |
begln Clock2 l\ l|
sw0_pulse[0] <= sw_port[0]; o _’

sw0_pulse[l] <= sw0_pulse[0];
sw0_pulse[2] <= sw0_pulse[l];
end

always ((posedge clk) SSELr <= {SSELr[1:0], SSEL};

