
1 

EECS 373 
Design of Microprocessor-Based Systems 
 
Website: www.eecs.umich.edu/courses/eecs373/ 
 
 
Ronald Dreslinski 
University of Michigan 
 
 
 
Midterm Review 

Slides developed in part by  
Prof. Dutta and Dr. Brehob 



What is an embedded system? 
 

2 



3 

 
 
 

 
What is driving the 

embedded everywhere explosion? 



4 

Moore’s Law (a statement about economics): 
IC transistor count doubles every 18-24 mo 

Photo Credit: Intel 



5 

     “Roughly every decade a new, 
lower priced computer class 

forms based on a new 
programming platform, 
network, and interface 

resulting in new usage and 
the establishment of a new 

industry.” 
 

- Gordon Bell [1972,2008] 

Bell’s Law: A new computer class every decade 

5 



Technology Scaling 
•  Moore’s Law 

–  Made transistors cheap 

•  Dennard’s Scaling 
–  Made them fast 
–  And low-power 

•  Result 
–  Holding #T’s constant 

•  Exponentially lower cost 
•  Exponentially lower power 

–  Small, cheap & low-power 
•  Microcontrollers 
•  Memory 
•  Radios 

Technology Innovations 
•  MEMS technology 

–  Micro-fabricated sensors 

•  New memories 
–  New cell structures (11T) 
–  New tech (FeRAM, FinFET) 

•  Near-threshold computing 
–  Minimize active power 
–  Minimize static power 

•  New wireless systems 
–  Radio architectures 
–  Modulation schemes 

•  Energy harvesting 

6 

What is driving Bell’s Law? 



7 

 
 
 

 
 

Why study 32-bit MCUs and FPGAs? 



8 

What differentiates these  
products from one another? 

 
FPGA                                  Microprocessor 
=====                                 ============= 

 
 
 



9 

MPU     FPGA   
 

 
 



10 

MCU-32  and PLDs are tied in embedded market share 



11 

Major elements of an Instruction Set Architecture 
(registers, memory, word size, endianess, conditions, instructions, addressing modes) 

32-bits 32-bits 

Endianess 

	
	mov	r0,	#1	
	
	ld		r1,	[r0,#5]	
	
						r1=mem((r0)+5)	
	
	bne	loop	
	
	subs	r2,	#1	

Endianess 



The endianess religious war: 284 years and counting! 

•  Modern version 
–  Danny Cohen 
–  IEEE Computer, v14, #10 
–  Published in 1981 
–  Satire on CS religious war 

•  Historical Inspiration 
–  Jonathan Swift 
–  Gulliver's Travels 
–  Published in 1726  
–  Satire on Henry-VIII’s split 

with the Church 
•  Now a major motion picture! 

12 

																														Memory					Value	
																														Offset		(LSB)	(MSB)	
																														======		===========	
uint8_t	a		=	1;															0x0000		01	02	FF	00	
uint8_t	b		=	2;	
uint16_t	c	=	255;	//	0x00FF	
uint32_t	d	=	0x12345678;						0x0004		78	56	34	12	

•  Little-Endian 
–  LSB is at lower address 

•  Big-Endian 
–  MSB is at lower address 

																														Memory					Value	
																														Offset		(LSB)	(MSB)	
																														======		===========	
uint8_t	a		=	1;															0x0000		01	02	00	FF	
uint8_t	b		=	2;	
uint16_t	c	=	255;	//	0x00FF	
uint32_t	d	=	0x12345678;						0x0004		12	34	56	78	



Addressing: Big Endian vs Little Endian (370 slide) 

•  Endian-ness: ordering of bytes within a word 
–  Little - increasing numeric significance with increasing 

memory addresses 
–  Big – The opposite, most significant byte first 
–  MIPS is big endian, x86 is little endian 



Instruction encoding 

•  Instructions are encoded in machine language opcodes 
•  Sometimes 

–  Necessary to hand generate opcodes 
–  Necessary to verify assembled code is correct 

•  How? 

Instructions	
movs	r0,	#10	
	
movs	r1,	#0	

AR
M

v7
 A

RM
 

Register	Value						Memory	Value	
001|00|000|00001010	(LSB)	(MSB)	
(msb)									(lsb)	0a	20	00	21	
001|00|001|00000000	



Assembly example 

data: 
    .byte 0x12, 20, 0x20, -1 
func: 
        mov r0, #0 
        mov r4, #0 
        movw   r1, #:lower16:data 
        movt   r1, #:upper16:data 
top:    ldrb   r2, [r1],1 
        add r4, r4, r2 
        add r0, r0, #1 
        cmp r0, #4 
        bne top 
 

15 



16 

An ISA defines the hardware/software interface 

•  A “contract” between architects and programmers 
•  Register set 
•  Instruction set 

–  Addressing modes 
–  Word size 
–  Data formats 
–  Operating modes 
–  Condition codes 

•  Calling conventions  
–  Really not part of the ISA (usually) 
–  Rather part of the ABI 
–  But the ISA often provides meaningful support. 



ARM Architecture roadmap 

17 



18 

ARM Cortex-M3 ISA 

Register Set Address Space 

Branching 
Data processing 

Load/Store 
Exceptions 

Miscellaneous 

Instruction Set 

32-bits 32-bits 

Endianess Endianess 



Addressing Modes (again) 

•  Offset Addressing 
–  Offset is added or subtracted from base register 
–  Result used as effective address for memory access 
–  [<Rn>, <offset>] 

•  Pre-indexed Addressing 
–  Offset is applied to base register 
–  Result used as effective address for memory access 
–  Result written back into base register 
–  [<Rn>, <offset>]! 

•  Post-indexed Addressing 
–  The address from the base register is used as the EA 
–  The offset is applied to the base and then written back 
–  [<Rn>], <offset> 



Application Program Status Register (APSR) 



21 



ABI quote 

•  A subroutine must preserve the contents of the 
registers r4-r8, r10, r11 and SP (and r9 in PCS 
variants that designate r9 as v6).  

22 



ABI Basic Rules 

1.  A subroutine must preserve the contents of the 
registers r4-11 and SP 
–  Let’s be careful with r9 though. 

 

2.   Arguments are passed though r0 to r3 
–  If we need more, we put a pointer into memory in one 

of the registers. 
•  We’ll worry about that later. 

 

3.  Return value is placed in r0 
–  r0 and r1 if 64-bits. 

4.  Allocate space on stack as needed.  Use it as 
needed. 
–  Put it back when done… 
–  Keep word aligned. 

 
23 



Other useful factoids 

•  Stack grows down. 
–  And pointed to by “sp” 

•  Address we need to go back to in “lr” 

And useful things for the example 
•  Assembly instructions 

–  add  adds two values  
–  mul  multiplies two values 
–  bx  branch to register  

24 



Memory-mapped I/O 

•  The idea is really simple 
–  Instead of real memory at a given memory address, 

have an I/O device respond. 
•  Huh? 

•  Example: 
–  Let’s say we want to have an LED turn on if we write a 

“1” to memory location 5. 
–  Further, let’s have a button we can read (pushed or 

unpushed) by reading address 4. 
•  If pushed, it returns a 1. 
•  If not pushed, it returns a 0. 

25 



Now… 

•  How do you get that to happen? 
–  We could just say “magic” but that’s not very helpful.  
–  Let’s start by detailing a simple bus and hooking 

hardware up to it. 

•  We’ll work on a real bus next time! 

26 



Basic example 

•  Discuss a basic bus protocol 
–  Asynchronous (no clock) 
–  Initiator and Target 
–  REQ#, ACK#, Data[7:0], ADS[7:0], CMD 

•  CMD=0 is read, CMD=1 is write. 
•  REQ# low means initiator is requesting something. 
•  ACK# low means target has done its job. 



A read transaction 

•  Say initiator wants to read location 0x24 
–  Initiator sets ADS=0x24, CMD=0. 
–  Initiator then sets REQ# to low. (why do we need a 

delay?  How much of a delay?) 
–  Target sees read request. 
–  Target drives data onto data bus. 
–  Target then sets ACK# to low. 
–  Initiator grabs the data from the data bus. 
–  Initiator sets REQ# to high, stops driving ADS and 

CMD 
–  Target stops driving data, sets ACK# to high 

terminating the transaction 



Read transaction  

ADS[7:0] 
 
CMD 
 
Data[7:0] 
 
REQ# 
 
ACK# 

?? ?? 0x24 

?? ?? 0x55 

   A B C D    E                     F         G    HI        



A write transaction  
(write 0xF4 to location 0x31) 

–  Initiator sets ADS=0x31, CMD=1, Data=0xF4 
–  Initiator then sets REQ# to low.  
–  Target sees write request. 
–  Target reads data from data bus. (Just has to store in a register, 

need not write all the way to memory!) 
–  Target then sets ACK# to low. 
–  Initiator sets REQ# to high & stops driving other lines. 
–  Target sets ACK# to high terminating the transaction 



The push-button 
(if ADS=0x04 write 0 or 1 depending on 
button) 

ADS[7] 
ADS[6] 
ADS[5] 
ADS[4] 
ADS[3] 
ADS[2] 
ADS[1] 
ADS[0] 
REQ# 

Button (0 or 1) 

0 

Data[7] 

Data[0] 

.. 

.. 

.. 

.. 

.. 

Delay ACK# 

Button (0 or 1) 



The push-button 
(if ADS=0x04 write 0 or 1 depending on 
button) 

ADS[7] 
ADS[6] 
ADS[5] 
ADS[4] 
ADS[3] 
ADS[2] 
ADS[1] 
ADS[0] 
REQ# 

Button (0 or 1) 

0 

Data[7] 

Data[0] 

.. 

.. 

.. 

.. 

.. 

Delay ACK# 

What about 
CMD? 



The LED 
(1 bit reg written by LSB of address 
0x05) 

ADS[5] 

ADS[7] 
ADS[6] 

ADS[4] 
ADS[3] 
ADS[2] 
ADS[1] 
ADS[0] 
REQ# 

Flip-flop 
which controls 
LED clock 

D 

DATA[5] 

DATA[7] 
DATA[6] 

DATA[4] 
DATA[3] 
DATA[2] 
DATA[1] 
DATA[0] 

Delay ACK# 



Advanced Microcontroller Bus Architecture (AMBA) 
- Advanced High-performance Bus (AHB) 
- Advanced Peripheral Bus (APB) 

AHB 
•  High performance 
•  Pipelined operation 
•  Burst transfers 
•  Multiple bus masters 
•  Split transactions 

APB 
•  Low power 
•  Latched address/control 
•  Simple interface 
•  Suitable of many 

peripherals 

34 



35 

Actel SmartFusion system/bus architecture 



Bus terminology 

•  Any given transaction have an “initiator” and 
“target” 
 

•  Any device capable of being an initiator is said to 
be a “bus master” 
–  In many cases there is only one bus master (single 

master vs. multi-master). 

•  A device that can only be a target is said to be a 
slave device. 

•  Some wires might be shared among all devices 
while others might be point-to-point connections 
(generally connecting the master to each 
target). 

 
 

36 



Driving shared wires 

•  It is commonly the case that some shared wires 
might have more than one potential device that 
needs to drive them. 
–  For example there might be a shared data bus that is 

used by the targets and the initiator.  We saw this in 
the simple bus. 

–  In that case, we need a way to allow one device to 
control the wires while the others “stay out of the 
way” 

•  Most common solutions are:  
–  using tri-state drivers (so only one device is 

driving the bus at a time) 
–  using open-collector connections (so if any 

device drives a 0 there is a 0 on the bus 
otherwise there is a 1) 

37 



Or just say no to shared wires. 

•  Another option is to not share wires that could 
be driven by more than one device... 
–  This can be really expensive.   

•  Each target device would need its own data bus. 
•  That’s a LOT of wires! 

–  Not doable when connecting chips on a PCB as you are 
paying for each pin. 

–  Quite doable (though not pretty) inside of a chip. 

38 



39 

APB is a fairly simple bus designed to be easy to  
work with. 

•  Low-cost 

•  Low-power 

•  Low-complexity 

•  Low-bandwidth 

•  Non-pipelined 

•  Ideal for peripherals 



APB bus signals 

•  PCLK  
–  Clock 

•  PADDR 
–  Address on bus 

•  PWRITE 
–  1=Write, 0=Read 

•  PWDATA 
–  Data written to the 

I/O device.  
Supplied by the 
bus master/
processor. 

40 



APB bus signals 

•  PSEL 
–  Asserted if the current 

bus transaction is 
targeted to this device 

•  PENABLE 
–  High during entire 

transaction other than 
the first cycle. 

•  PREADY 
–  Driven by target. 

Similar to our #ACK.  
Indicates if the target 
is ready to do 
transaction. 
Each target has it’s 
own PREADY   

41 



So what’s happening here? 



43 

A read transfer with wait states 

Setup phase begins 
with this rising edge 

Setup 
Phase 

Access 
Phase 

Wait 
State 

Wait 
State 



Interrupts 

Interrupt (a.k.a. exception or trap):   
•  An event that causes the CPU to stop executing the 

current program and begin executing a special piece of 
code called an interrupt handler or interrupt service 
routine (ISR).  Typically, the ISR does some work and 
then resumes the interrupted program. 

 
Interrupts are really glorified procedure calls, except that 

they: 
•  can occur between any two instructions 
•  are transparent to the running program (usually) 
•  are not explicitly requested by the program 

(typically) 
•  call a procedure at an address determined by the 

type of interrupt, not the program 



Two basic types of interrupts 
(1/2) 

•  Those caused by an instruction 
–  Examples: 

• TLB miss 
•  Illegal/unimplemented instruction 
• div by 0 

–  Names: 
• Trap, exception 



Two basic types of interrupts 
(2/2) 

•  Those caused by the external world 
–  External device 
–  Reset button 
–  Timer expires 
–  Power failure 
–  System error 

•  Names: 
–  interrupt, external interrupt 



How it works 

•  Something tells the processor core there is an 
interrupt 

•  Core transfers control to code that needs to be 
executed 

•  Said code “returns” to old program 
•  Much harder then it looks. 

–  Why? 



… is in the details 

•  How do you figure out where to branch to? 

•  How do you ensure that you can get back to 
where you started? 

•  Don’t we have a pipeline?  What about partially 
executed instructions? 

•  What if we get an interrupt while we are 
processing our interrupt? 

•  What if we are in a “critical section?” 



Where 

•  If you know what caused the interrupt 
then you want to jump to the code that 
handles that interrupt. 
–  If you number the possible interrupt cases, 

and an interrupt comes in, you can just 
branch to a location, using that number as an 
offset (this is a branch table) 

–  If you don’t have the number, you need to 
poll all possible sources of the interrupt to 
see who caused it. 

•  Then you branch to the right code 



50 

Enabling and disabling interrupt sources 



51 

Polling-Driven Application 

•  Recall pushbutton-LED example 
 

  mov  r0, #0x4   % PBS MMIO address 
  mov  r1, #0x5   % LED MMIO address 

loop:  ldr  r2, [r0, #0]  % Read value from switch [1 cycle] 
  str  r2 [r1, #0]  % Save value to LED [1 cycle] 
  b  loop   % Repeat these steps [1 cycle] 

•  This is a polling-driven application 
•  Software constantly loops, polling and (re)acting 
•  However, it doesn’t do anything else useful! 



52 

The Problem with Polling 

•  If we want to do other work, we might call a routine: 
 

  mov  r0, #0x4   % PBS MMIO address 
  mov  r1, #0x5   % LED MMIO address 

loop:  ldr  r2, [r0, #0]  % Read value from switch [1 cycle] 
  str  r2 [r1, #0]  % Save value to LED [1 cycle] 
  bl  do_some_work  % Do some other work [100 cycles] 
  b  loop   % Repeat these steps [1 cycle] 

•  Polling affects the responsiveness of PBS ó LED path! 
– Whenever we’re “doing some work,” we not polling PBS 
– And the more “other work” we do, the worse the latency gets 

•  And it affects the efficiency of the processor 
– The ldr/str values don’t change very either much 
– So, the processor is mostly wasting CPU cycles (and energy) 



53 

Polling trades off efficiency and responsiveness 

 mov  r0, #0x4   % PBS MMIO address 
 mov  r1, #0x5   % LED MMIO address 

loop:  ldr  r2, [r0, #0]   % Read value from switch [1 cycle] 
 str  r2 [r1, #0]   % Save value to LED [1 cycle] 
 bl  do_some_work  % Do some other work [100 cycles] 
 b  loop   % Repeat these steps [1 cycle] 

Effi
ci
en

cy
	

Responsiveness	

•  Efficiency 
–  Minimizing useless work 
–  Maximizing useful work 
–  Saving cycles & energy 

•  Responsiveness 
–  Minimizing latency 
–  Tight event-action coupling 

•  Can we do better?  Yes! 



Level-triggered interrupts 

•  Basics: 
–  Signaled by asserting a line low or high 
–  Interrupting device drives line low or high and holds it there until 

it is serviced 
–  Device deasserts when directed to or after serviced 

•  Requires some way to tell it to stop. 
 

•  Sharing? 
–  Can share the line among multiple devices  
–  Often open-collector or HiZ 

•  Active devices assert the line, inactive devices let the line float 
–  Easy to share line w/o losing interrupts 
–  But servicing increases CPU load  
–  And requires CPU to keep cycling through to check 
–  Different ISR costs suggests careful ordering of ISR checks  
–  Can’t detect a new interrupt when one is already asserted 

54 



Edge-triggered interrupts 

•  Basics: 
–  Signaled by a level *transition* (e.g. rising/falling edge) 
–  Interrupting device drives a pulse onto INT line 

 

•  Sharing *is* possible 
–  INT line has a pull up and all devices are OC/OD. 
–  Could we miss an interrupt?  Maybe...if close in time 
–  What happens if interrupts merge?  Need one more ISR pass 
–  Easy to detect "new interrupts” 
–  Pitfalls: spurious edges, missed edges 

 

•  Source of "lockups" in early computers 

55 



56 

Basic interrupt processing 

•  Stacking 
–  Automatically by CPU 
–  Maintains ABI semantics 
–  ISRs can be C functions 

•  Vector Fetch 
–  We’ll see this next 

•  Exit: update of SP, LR, PC 

SP	

xPSR	

PC	

LR	

R12	

R3	

R2	

R1	

R0	

Previous	
stacked	
data	

Free	
stack	
space	

ñ	
Higher	Addresses	

Lower	Addresses	

ñ	

The	stack	(PSP	or	MSP)	



57 

NVIC/Interrupt configuration registers 

•  ICTR  Interrupt Controller Type Register (RW) 
•  ISER  Interrupt Set-Enable Register (RW) 
•  ICER  Interrupt Clear-Enable Register (RW) 
•  ISPR  Interrupt Set-Pending Register (RW) 
•  ICPR  Interrupt Clear-Pending Register (RW) 
•  IABR  Interrupt Active Bit Register (RO) 
•  IPR   Interrupt Priority Register (RW) 
•  AIRC  Application Interrupt and Reset Control 



Enabling and disabling interrupt sources 

58 



59 



60 



Pending interrupts 

61 

The normal case.  Once Interrupt request is seen, processor puts it in  
“pending” state even if hardware drops the request.  
IPS is cleared by the hardware once we jump to the ISR. 

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4 



62 

In this case, the processor never took the interrupt because we cleared the  
IPS by hand (via a memory-mapped I/O register) 



63 



64 



Answer 

65 



Interrupt pulses before entering ISR 

66 



Answer 

67 



68 



Interrupt Priority 

•  What do we do if several interrupts arrive simultaneously? 
•  NVIC allows priorities for (almost) every interrupt 
•  3 fixed highest priorities, up to 256 programmable priorities 

–  128 preemption levels 
–  Not all priorities have to be implemented by a vendor 

–  SmartFusion has 32 priority levels, i.e. 0x00, 0x08, … , 0xF8 

•  Higher priority interrupts can pre-empt lower priorities 
•  Priority can be sub-divided into priority groups 

–  Splits priority register into two halves, preempt priority & subpriority 
–  Preempt priority: indicates if an interrupt can preempt another 
–  Subpriority: used to determine which is served first if two interrupts of 

same group arrive concurrently 
69 



Interrupt Priority (2) 

•  Interrupt priority level registers 
–  Range: 0xE000E400 to 0xE000E4EF 

70 



Preemption Priority and Subpriority 

71 



PRIMASK, FAULTMASK, and BASEPRI registers 

•  What if we quickly want to disable all interrupts? 
•  Write 1 into PRIMASK to disable all interrupts except NMI 

–  MOV  R0, #1 
–  MSR  PRIMASK, R0  ; MSR and MRS are special instructions 

•  Write 0 into PRIMASK to enable all interrupts 

•  FAULTMASK is the same as PRIMASK, but it also blocks 
hard faults (priority = -1) 

•  What if we want to disable all interrupts below a certain 
priority? 

•  Write priority into BASEPRI register 
–  MOV  R0, #0x60 
–  MSR  BASEPRI, R0 

72 



Masking 

73 



Interrupt Service Routines 

•  Automatic saving of registers upon exception 
–  PC, PSR, R0-R3, R12, LR 
–  This occurs over data bus 

•  While data bus busy, fetch exception vector 
–  i.e. target address of exception handler 
–  This occurs over instruction bus 

•  Update SP to new location 
•  Update IPSR (low part of xPSR) with exception new # 
•  Set PC to vector handler 
•  Update LR to special value EXC_RETURN 
•  Several other NVIC registers gets updated 
•  Latency can be as short as 12 cycles (w/o mem delays) 

74 



The xPSR register layout 

75 



ARM interrupt summary 

1.  We’ve got a bunch of memory-mapped registers 
that control things (NVIC) 
–  Enable/disable individual interrupts 
–  Set/clear pending 
–  Interrupt priority and preemption 

 

2.  We’ve got to understand how the hardware 
interrupt lines interact with the NVIC 

3.  And how we figure out where to set the PC to 
point to for a given interrupt source. 

76 



1. NVIC registers (example) 

77 



1. More registers (example) 

78 



1. Yet another part of the NVIC registers! 

79 



2. How external lines interact with the NVIC 

80 

The normal case.  Once Interrupt request is seen, processor puts it in  
“pending” state even if hardware drops the request.  
IPS is cleared by the hardware once we jump to the ISR. 

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4 



3. How the hardware figures out what to set the PC to 

g_pfnVectors: 
    .word  _estack 
    .word  Reset_Handler 
    .word  NMI_Handler 
    .word  HardFault_Handler 
    .word  MemManage_Handler 
    .word  BusFault_Handler 
    .word  UsageFault_Handler 
    .word  0 
    .word  0 
    .word  0 
    .word  0 
    .word  SVC_Handler 
    .word  DebugMon_Handler 
    .word  0 
    .word  PendSV_Handler 
    .word  SysTick_Handler 
    .word  WdogWakeup_IRQHandler 
    .word  BrownOut_1_5V_IRQHandler 
    .word  BrownOut_3_3V_IRQHandler 
.............. (they continue)  

81 



What happens when we return from an ISR? 

82 

•  Interrupt exiting process 
–  System restoration needed (different from branch) 
–  Special LR value could be stored (0xFFFFFFFx) 

•  Tail chaining 
–  When new exception occurs 
–  But CPU handling another exception of same/higher priority 
–  New exception will enter pending state 
–  But will be executed before register unstacking 
–  Saving unnecessary unstacking/stacking operations 
–  Can reenter hander in as little as 6 cycles  

•  Late arrivals (ok, so this is actually on entry) 
–  When one exception occurs and stacking commences 
–  Then another exception occurs before stacking completes 
–  And second exception of higher preempt priority arrives 
–  The later exception will be processed first 



What happens when we return from an ISR? 

83 

•  Interrupt exiting process 
–  System restoration needed (different from branch) 
–  Special LR value could be stored (0xFFFFFFFx) 

–  Walkthrough a few examples, simplified system assumptions: 
–  5 Interrupt Levels (0-4) 
–  256 Priority Levels (0 Highest, 256 Lowest) 

–  First time presenting, so errors in the animation are unintentional 
but may be present (lets find out together) 



Single Interrupt 

84 

Program 

Interrupt on 
Level 4 

Execution Time 

HW 
SW 

0 0 0 0 0 
4 0 

Pending 

0 0 0 0 0 
4 0 

Active 

1 1 1 1 1 
4 0 

Enabled 

Program  
Stack 8 

10 
5 
3 
6 

0 
1 
2 
3 
4 

Priority Table 

Base Priority 
256 



Single Interrupt 

85 

Program 
Stack 

Interrupt on 
Level 4 

Execution Time 

HW 
SW 

PC 
PSR 
LR 

R0-R3, R12 

1 0 0 0 0 
4 0 

Pending 

0 0 0 0 0 
4 0 

Active 

1 1 1 1 1 
4 0 

Enabled 

Program  
Stack 8 

10 
5 
3 
6 

0 
1 
2 
3 
4 

Priority Table 

6 
Base Priority 



Single Interrupt 

86 

Program ISR-LVL4 
Stack 

Interrupt on 
Level 4 

Execution Time 

HW 
SW 

Program  
Stack 

PC 
PSR 
LR 

R0-R3, R12 

0 0 0 0 0 
4 0 

Pending 

1 0 0 0 0 
4 0 

Active 

1 1 1 1 1 
4 0 

Enabled 

ISR-LVL4 
Stack 

8 
10 
5 
3 
6 

0 
1 
2 
3 
4 

Priority Table 

6 
Base Priority 



Single Interrupt 

87 

Program ISR-LVL4 
Stack 

Interrupt on 
Level 4 bx lr 

Execution Time 

HW 
SW 

PC 
PSR 
LR 

R0-R3, R12 

0 0 0 0 0 
4 0 

Pending 

1 0 0 0 0 
4 0 

Active 

1 1 1 1 1 
4 0 

Enabled 

Program  
Stack 8 

10 
5 
3 
6 

0 
1 
2 
3 
4 

Priority Table 

6 
Base Priority 



Single Interrupt 

88 

Program ISR-LVL4 
Stack Unstack 

Interrupt on 
Level 4 bx lr 

Execution Time 

HW 
SW 

0 0 0 0 0 
4 0 

Pending 

0 0 0 0 0 
4 0 

Active 

1 1 1 1 1 
4 0 

Enabled 

Program  
Stack 8 

10 
5 
3 
6 

0 
1 
2 
3 
4 

Priority Table 

6 
Base Priority 



Single Interrupt 

89 

Program ISR-LVL4 
Stack Unstack 

Program 

Interrupt on 
Level 4 bx lr 

Execution Time 

HW 
SW 

8 
10 
5 
3 
6 

0 
1 
2 
3 
4 

Priority Table 
0 0 0 0 0 
4 0 

Pending 

0 0 0 0 0 
4 0 

Active 

1 1 1 1 1 
4 0 

Enabled 

Program  
Stack 

256 
Base Priority 



Nested Interrupts 

–  When new exception occurs 
–  And CPU handling another exception of lower priority 

(incoming request is higher priority) 
–  New exception will interrupt the current ISR 
–  Will generate a new ISR stack on the stack 

 

90 



Nested Interrupt 

91 

Program ISR-LVL4 
Stack 

Interrupt on 
Level 4 

Execution Time 

HW 
SW 

8 
10 
5 
3 
6 

0 
1 
2 
3 
4 

Priority Table 
0 0 0 0 0 
4 0 

Pending 

1 0 0 0 0 
4 0 

Active 

1 1 1 1 1 
4 0 

Enabled 

Program  
Stack 

6 

Interrupt on 
Level 3 

PC 
PSR 
LR 

R0-R3, R12 
ISR-LVL4 

Stack 

Base Priority 



Nested Interrupt 

92 

Program ISR-LVL4 
Stack 

Interrupt on 
Level 4 

Execution Time 

HW 
SW 

8 
10 
5 
3 
6 

0 
1 
2 
3 
4 

Priority Table 
0 1 0 0 0 
4 0 

Pending 

1 0 0 0 0 
4 0 

Active 

1 1 1 1 1 
4 0 

Enabled 

Program  
Stack 

6 

Interrupt on 
Level 3 

Stack 

PC 
PSR 
LR 

R0-R3, R12 
ISR-LVL4 

Stack 

PC 
SP 
LR 

R0-R4, R12 

Base Priority 



Nested Interrupt 

93 

Program ISR-LVL4 
Stack 

Interrupt on 
Level 4 

Execution Time 

HW 
SW 

8 
10 
5 
3 
6 

0 
1 
2 
3 
4 

Priority Table 
0 0 0 0 0 
4 0 

Pending 

1 1 0 0 0 
4 0 

Active 

1 1 1 1 1 
4 0 

Enabled 

Program  
Stack 

3 

Interrupt on 
Level 3 

ISR-LVL3 
Stack 

PC 
PSR 
LR 

R0-R3, R12 
ISR-LVL4 

Stack 

PC 
PSR 
LR 

R0-R3, R12 
ISR-LVL3 

Stack 

Base Priority 



Nested Interrupt 

94 

Program ISR-LVL4 
Stack Unstack 

Interrupt on 
Level 4 bx lr 

Execution Time 

HW 
SW 

8 
10 
5 
3 
6 

0 
1 
2 
3 
4 

Priority Table 
0 0 0 0 0 
4 0 

Pending 

1 0 0 0 0 
4 0 

Active 

1 1 1 1 1 
4 0 

Enabled 

Program  
Stack 

6 

Interrupt on 
Level 3 

ISR-LVL3 
Stack 

PC 
PSR 
LR 

R0-R3, R12 
ISR-LVL4 

Stack 

Base Priority 



Nested Interrupt 

95 

Program ISR-LVL4 
Stack Unstack 

Interrupt on 
Level 4 bx lr 

Execution Time 

HW 
SW 

8 
10 
5 
3 
6 

0 
1 
2 
3 
4 

Priority Table 
0 0 0 0 0 
4 0 

Pending 

0 0 0 0 0 
4 0 

Active 

1 1 1 1 1 
4 0 

Enabled 

Program  
Stack 

256 

Interrupt on 
Level 3 

ISR-LVL3 
Stack 

ISR-LVL4 
Unstack 

bx lr 

Base Priority 



Tail Chaining 

–  When new exception occurs 
–  But CPU handling another exception of same/higher 

priority (incoming request is lower priority) 
–  New exception will enter pending state 
–  But will be executed before register unstacking 
–  Saving unnecessary unstacking/stacking operations 
–  Can reenter hander in as little as 6 cycles  

96 



Tail-Chaining 

97 

Program ISR-LVL4 
Stack 

Interrupt on 
Level 4 

Execution Time 

HW 
SW 

8 
10 
5 
3 
6 

0 
1 
2 
3 
4 

Priority Table 
0 0 0 1 0 
4 0 

Pending 

1 0 0 0 0 
4 0 

Active 

1 1 1 1 1 
4 0 

Enabled 

Program  
Stack 

6 

Interrupt on 
Level 1 

PC 
PSR 
LR 

R0-R3, R12 
ISR-LVL4 

Stack 

Base Priority 



Tail-Chaining 

98 

Program ISR-LVL4 
Stack 

Interrupt on 
Level 4 bx lr 

Execution Time 

HW 
SW 

8 
10 
5 
3 
6 

0 
1 
2 
3 
4 

Priority Table 
0 0 0 1 0 
4 0 

Pending 

0 0 0 0 0 
4 0 

Active 

1 1 1 1 1 
4 0 

Enabled 

Program  
Stack 

6 

Interrupt on 
Level 1 

PC 
PSR 
LR 

R0-R3, R12 

Don’t Unstack 

Base Priority 



Tail-Chaining 

99 

Program ISR-LVL4 
Stack 

Interrupt on 
Level 4 bx lr 

Execution Time 

HW 
SW 

8 
10 
5 
3 
6 

0 
1 
2 
3 
4 

Priority Table 
0 0 0 0 0 
4 0 

Pending 

0 0 0 1 0 
4 0 

Active 

1 1 1 1 1 
4 0 

Enabled 

Program  
Stack 

10 

Interrupt on 
Level 1 

ISR-LVL1 

PC 
PSR 
LR 

R0-R3, R12 
ISR-LVL1 

Stack 

Base Priority 



Tail-Chaining 

100 

Program ISR-LVL4 
Stack 

Program 

Interrupt on 
Level 4 bx lr 

Execution Time 

HW 
SW 

8 
10 
5 
3 
6 

0 
1 
2 
3 
4 

Priority Table 
0 0 0 0 0 
4 0 

Pending 

0 0 0 0 0 
4 0 

Active 

1 1 1 1 1 
4 0 

Enabled 

Program  
Stack 

256 

Interrupt on 
Level 1 

ISR-LVL1 
Unstack 

bx lr 

Base Priority 



Late Arrival 

•  Late arrivals (ok, so this is actually on entry) 
–  When one exception occurs and stacking commences 
–  Then another exception occurs before stacking 

completes 
–  And second exception of higher preempt priority 

arrives 
–  The later exception will be processed first 

101 



Late Arrival 

102 

Program 
Stack 

Interrupt on 
Level 4 

Execution Time 

HW 
SW 

8 
10 
5 
3 
6 

0 
1 
2 
3 
4 

Priority Table 
1 1 0 0 0 
4 0 

Pending 

0 0 0 0 0 
4 0 

Active 

1 1 1 1 1 
4 0 

Enabled 

Program  
Stack 

256 

Interrupt on 
Level 3 

PC 
PSR 
LR 

R0-R3, R12 

Once stacking 
complete, find 

vector for highest 
priority pending 

Base Priority 



Late Arrival 

103 

Program 
Stack 

Interrupt on 
Level 4 bx lr 

Execution Time 

HW 
SW 

8 
10 
5 
3 
6 

0 
1 
2 
3 
4 

Priority Table 
1 0 0 0 0 
4 0 

Pending 

0 1 0 0 0 
4 0 

Active 

1 1 1 1 1 
4 0 

Enabled 

Program  
Stack 

3 

Interrupt on 
Level 3 

ISR-LVL3 

PC 
PSR 
LR 

R0-R3, R12 
ISR-LVL3 

Stack 

Base Priority 



Late Arrival 

104 

Program ISR-LVL4 
Stack 

Program 

Interrupt on 
Level 4 bx lr 

Execution Time 

HW 
SW 

8 
10 
5 
3 
6 

0 
1 
2 
3 
4 

Priority Table 
0 0 0 0 0 
4 0 

Pending 

0 0 0 0 0 
4 0 

Active 

1 1 1 1 1 
4 0 

Enabled 

Program  
Stack 

256 

Interrupt on 
Level 3 

ISR-LVL3 
Unstack 

bx lr 

Tail Chaining used 
to service lower 
priority request 

Base Priority 



•  You	never	have	enough	Emers.	
–  Never.	

•  So	what	are	we	going	to	do	about	it?	
–  How	about	we	handle	in	soMware?	

Virtual Timers 



•  Simple	idea.	
–  Maybe	we	have	10	events	we	might	want	to	generate.	

•  Just	make	a	list	of	them	and	set	the	Emer	to	go	off	for	the	
first	one.			
–  Do	that	first	task,	change	the	Emer	to	interrupt	for	
the	next	task.	

Virtual Timers 



•  Only	works	for	“compare”	Emer	uses.	
•  Will	result	in	slower	ISR	response	Eme	

–  May	not	care,	could	just	schedule	sooner…	

Problems? 



•  Shared	user-space/ISR	data	structure.	
–  InserEon	happens	at	least	some	of	the	Eme	in	user	
code.	

–  DeleEon	happens	in	ISR.	
• We	need	criEcal	secEon	(disable	interrupt)	

•  How	do	we	deal	with	our	modulo	counter?	
–  That	is,	the	Emer	wraps	around.	
–  Why	is	that	an	issue?	

•  What	funcEonality	would	be	nice?	
–  Generally	one-shot	vs.	repeaEng	events	
–  Might	be	other	things	desired	though	

•  What	if	two	events	are	to	happen	at	the	same	
Eme?	
–  Pick	an	order,	do	both…	

Implementation Issues 



•  What	data	structure?	
–  Data	needs	be	sorted	

•  InserEng	one	thing	at	a	Eme	
–  We	always	pop	from	one	end	
–  But	we	add	in	sorted	order.	

Implementation Issues (continued) 



Data	structures	



Some loose ends…glitches and all that 



Full adder (from Wikipedia) 

•  Assume 
–  XOR delay = 0.2ns 
–  AND delay = 0.1ns  
–  OR delay = 0.1 ns 

•  What is the worst 
case propagation 
delay for this 
circuit?  

x 

y 

z 

Timing delays and propagation 



x 

y 

z 
Full adder (from Wikipedia) 

Consider the adjacent circuit diagram. Assuming the XOR gates have  
a delay of 0.2ns while AND and OR gates have a delay of 0.1ns, fill in 
the following chart.  

Only selected causality 
arrows shown… 

Glitches 



Glitching: a summary 

•  When input(s) change 
–  The output can be wrong for a time 
–  However, that time is bounded 

 

•  And more so, the output can change during this 
“computation time” even if the output ends up 
where it started! 



Effect of Glitches 

•  Think back to EECS 370. 
–  Why don’t glitches cause errors? 

–  The trick is that the inputs all change 
at the same time 

•  In this case, the ID/EX registers all 
change some time shortly after the 
rising edge of the clock. 

–  And we’ve chosen the clock period 
such that the next edge doesn’t 
happen until the combinational logic 
has stopped glitching. 

•  In fact, we use the worst-case 
combinational logic delay in the whole 
system when determining the clock 
period! 

 



So, how can glitches hurt us? 

•  There are a handful of places: 
–  Asynchronous resets 

•  If you’ve got a flip-flop that has an 
asynchronous reset (or “preset”) you need to 
be sure the input can’t glitch. 

–  That pretty much means you need a flip-
flop driving the input (which means you 
probably should have used a sync. reset!) 

–  Clocks 
•  If you are using combinational logic to drive a 

clock, you are likely going to get extra clock 
edges. 

Traditionally, CLR is used 
to indicate async reset.  “R” 
or “reset” for sync. reset. 

If clk is high and cond  
glitches, you get extra  
edges! 



Design rules 

1.  Thou shalt not use asynchronous 
resets 
 

2.  Thou shalt not drive a clock with 
anything other than a clock or 
directly off of a flip-flop’s output 

X 
X 



Really?  Seriously? 

•  People do use asynchronous resets and clock gating! 

–  Yep.  And people use goto in C programs. 
•  Sometimes they are the right thing. 

–  But you have to think really hard about them to insure 
that they won’t cause you problems. 

–  Our “simple” bus used 
combinational logic for 
the clock 

•  Works because REQ goes 
low only after everything 
else has stopped switching 

–  So no glitch. 
•  Not fun to reason about… 

•  Avoid unless you must 
–  Then think really carefully. 



Setup and hold time 

•  The idea is simple. 
–  When the clock is changing 

if the data is also changing it 
is hard to tell what the data 
is.   

•  Hardware can’t always tell 
–  And you can get meta-stable behavior too (very 

unlikely but…) 
–  So we have a “guard band” around the clock rising time 

during which we don’t allow the data to change. 
•  See diagram.  We call the time before the clock-

edge “setup time” and the time after “hold time” 



Example: 

Fast and slow paths;  
impact of setup and hold time 



So what happens if we violate set-up or hold time? 

•  Often just get one of the two values. 
–  And that often is just fine. 

•  Consider getting a button press from the user. 
•  If the button gets pressed at the same time as the 

clock edge, we might see the button now or next 
clock. 

–  Either is generally fine when it comes to human 
input. 

–  But bad things could happen. 
•  The flip-flop’s output might not settle out to a “0” or 

a “1” 
–  That could cause later devices to mess up. 

•  More likely, if that input is going to two places, one 
might see a “0” the other a “1” 

•  Important: don’t feed an async input to multiple 
places! 



Example 

•  A common thing to do is reset a state machine 
using a button. 
–  User can “reset” the system. 

•  Because the button transition could violate set-
up or hold time, some state bits of the state 
machine might come out of reset at different 
times. 
–  And you quickly end up at a wrong or illegal state. 



So… 

•  Dealing with inputs not synchronized to our local clock 
is a problem. 
–  Likely to violate setup or hold time. 

•  That could lead to things breaking. 

•  So we need a clock synchronization circuit. 
–  First flip-flop might have problems. 
–  Second should be fine. 
–  Sometimes use a third if  

really paranoid 
•  Safety-critical system for example. 

Figure from http://www.eeweb.com/electronics-quiz/solving-metastability-design-issues, we use the same thing to deal with external inputs too!  



Design rules 

3.  Thou shalt use a clock 
synchronization circuit when 
changing clock domains or using 
unclocked inputs! 

➼
/* Synchonization of Asynchronous switch input */ 
 
always@(posedge clk) 
begin 
 sw0_pulse[0] <= sw_port[0]; 
 sw0_pulse[1] <= sw0_pulse[0]; 
 sw0_pulse[2] <= sw0_pulse[1]; 
end 
 always @(posedge clk) SSELr <= {SSELr[1:0], SSEL}; 


