LAB 7

Real-World Interfacing with a Nintendo
Controller

Value: 300 points (Plus up to 20 points of extra credit)

1 Introduction

The purpose of this lab is to learn how to design, develop and implement a sequential digital
circuit whose purpose is to interface with an actual hardware device.

2 Preparation

o Read Chapter 7 of Wakerly, especially Section 7.6 on state machine synthesis.
e Reading section 2.16 of Wakerly is suggested as it provides some context for this assignment.

3 Design specification

3.1 Overview

The design task of this lab is to develop an interface to a Nintendo-16 controller. Your design will
cause different LEDs to light up depending upon which button on the controller has been pressed.
In addition, you are to design a state machine that observes the keys pressed on the controller.
When a certain combination is observed, one of the 7-segment LEDs will light up.

3.2 Nintendo-16 Controller

The Nintendo controller has eight buttons: left, right, up, down, A, B, select and start. The
controller is connected to the Nintendo Entertainment System (called NES) by seven wires. One
wire is ground, one Vcc, and two are unused. The other three wires are called “Latch”, “Pulse”
and “Data”. When the controller is connected to the NES, the NES asks it to send the current state
of its buttons about 60 times a second (60 Hertz). The NES does this in two stages. First it sends
a pulse on the Latch wire. One the rising edge of this pulse, the controller samples all eight
buttons. The NES then sends pulses on the Pulse wire. For each rising edge on the Pulse wire, the
controller sends information about a different button on the Data wire. For more detailed
information, see http://web.mit.edu/tarvizo/web/nes-controller.html. A figure from that page can
be found below.

EECS 270: Introduction to Logic Design
University of Michigan—Spring 2005

LAB 7: Real-World Interfacing with a Nintendo Controller

Latch
Pulse
S D G O o I (PR G SR
oo
Figure 1: A controller transaction
3.21 Connecting the NES controller to the Xilinx board

3.2.2

3.2.3

Each lab station should already have a controller connected to the Xilinx board. Because all of the
pins on the FPGA are already connected to some type of I/O device (LEDs, switches, buttons,
etc.), we have elected to connect the controller to the same pins used by the first three dipswitches.
It is imperative that the first three dipswitches be in the off position throughout this lab. If they
are in the on position the wires will be kept low at all times, and you won’t be able to
communicate with the controller!

e The Latch wire is connected to DIPSW?2 (pin 8) (pin 7 on the board)
e The Pulse wire is connected to DIPSW3 (pin 9) (pin 11 on the board)
e The Data wire is connected to DIPSW1 (pin 7) (pin 6 on the board)

In the event that the wires become disconnected, ask your GSI or instructor to reconnect them for
you. For the generic controllers, the brown, yellow, red, white and blue wires are connected to
ground, VDD, pin 6, pin 7 and pin 11, respectively. For the Nintendo® brand controllers, the
brown, white, yellow, orange and red wires are connected to ground, VDD, pin 6, pin 7 and pin
11, respectively.

NES/controller communication?

The NES uses a serialized polling mechanism to query the state of the buttons 60 times a second.
First, the NES sends a 12us high signal to the Latch wire, telling the controller to latch the state of
all buttons internally. 6 ps later, the NES sends 8 high pulses on the Pulse wire, each with a period
of 12ps per full cycle and a 50% duty cycle.

After detecting the rising edge on Latch, the controller sends the status of the A button on the Data
wire; Data is low if the A button is pressed, high if it is not. For each pulse on the Pulse wire, the
controller drives the Data wire low if the button corresponding to that pulse was pressed. (The
button states on Data are thus active low.) The button order is always the same: A, B, Select, Start,
Up, Down, Left, Right. Again, see Figure 1 for more information.

Timing issues

The Xilinx chip has an internal 12MHz clock. It is connected to pin 13 and you can use it like any
other input (add the appropriate line to your ucf file, have an IPAD and IBUF, etc.). In your
design, you need not use exactly the same timing used by the NES. In general, the pulse widths
for the Pulse signal should not be less than 6ps, and the pulse width for your Latch signal should
not be less than 12ps. Also, you at a rate near 60Hz, but sampling as slow as 30Hz will work just
fine for this project. Finally, depending upon your implementation, it is probably best to have the

! Portions of this section are taken from http://web.mit.edu/tarvizo/web/nes-controller.html.

EECS 270: Introduction to Logic Design
University of Michigan—Spring 2005

LAB 7: Real-World Interfacing with a Nintendo Controller

3.24

3.25

3.2.6

whole polling time (the time from the rising edge of Latch to the last falling edge of Pulse) be no
more than 5% of the time between Latches (so the controller is idle 95% of the time). See Figure
2 for an illustration of this idea.

You will need to divide the clock frequency to a speed that is appropriate. You will need to be
very sure that your clock does not “glitch.” Use the techniques discussed in class, latching the
output or using T-flip-flops, to avoid this glitching. Note that you have two main timing
requirements to meet—the sampling rate (i.e., the time between Latch pulses) and the pulse widths
and periods for Latch and Pulse—so you may need multiple divided clocks.

JIil Il

Y)\ —— _
<5% >95%

Figure 2: Pulse timing

Generating Latch and Pulse

You will need to generate the Latch and Pulse signals so that the controller responds correctly.
Assuming you have managed to divide the clock to an appropriate frequency, you are left with a
number of options. You could design a state machine which generates Latch and Pulse. This state
machine would restart every time you desired to sample the controller, and its outputs would be
the Latch and Pulse signals.

Another option is to use a counter (which is of course a state machine itself) to generate Latch and
Pulse. Again, you would need to be sure you are only generating these signals when sampling the
controller.

Reading Data

Once you correctly generate the Latch and Pulse signals, the controller will transmit the button
status on the Data wire. You will want to use a shift register to read each bit from the Data wire.
You should give careful consideration to how to clock the shift register.

Displaying data to the LEDs

You are to map the button data to the bar LEDs so that when a given button is pushed some
corresponding LED is lit. You may map the buttons to the bar LEDs in any way you see fit so
long as each button lights a unique LED.

|—> Data
- Latch » Latch
X|_I|ni<3clock CLK Data
(pin 13) Pulse | Pulse
NES controller
LEDS |
Your design

Figure 3: How the NES controller interacts with your design

EECS 270: Introduction to Logic Design
University of Michigan—Spring 2005

LAB 7: Real-World Interfacing with a Nintendo Controller

3.3

3.3.1

3.3.2

Easter Egg

Background

Easter egg:

Programmers sometimes put pieces of code into an application that produce unexpected
surprises. Users usually won't see them unless they press a certain key combination. They're
usually found by word of mouth and rarely by accident.
www.pccomputernotes.com/pcterms/glossarye.htm

Many games have secret codes that cause the game to behave differently. These “Easter Eggs” are
activated by pressing a certain sequence of keys. Most NES games have Easter Eggs of one type
or another in them.

Requirements

Each student will be assigned a different 4-key code. When that code is entered into the NES
controller, a single segment of one of the 7-segment LEDs should be lit—you choose which one.
The user must press the right buttons in order and press no other buttons between correct presses
for the entry of the code sequence to be considered correct. The segment on the 7-segment LED
should remain lit until the start button on the controller is pressed. In all cases, the bar LEDs
should continue to function as before. Once you have successfully implemented the required
functionality, you can improve upon this Easter Egg feature to earn a few extra credit points.
Information is available in the Deliverables section of this lab.

Design Notes, Hints and Restrictions

e Do the pre-lab questions before attempting the lab.

e Getting the Latch and Pulse outputs correct is one of the most difficult portions of this lab—it
is easy to underestimate! Deciding between using a counter, a state machine, or some other
technique to generate Latch and Pulse is something you should spend some time thinking
about (and designing) before you start.

e Itis strongly suggested that you test your generation of Latch and Pulse in simulation before
trying to interface to the board. In simulation, you will want to use the divided clock as an
input rather than the system clock—in other words, you should assign a stimulator to the
divided clock. If you have multiple divided clocks, use the fastest one as the simulator input.

e We do have oscilloscopes which can be useful in debugging your design once you actually
start trying to communicate with the controller. We will only use them with you if you can
demonstrate that your design works in simulation!

e When doing your Easter Egg you may find it helpful to drive a different LED depending upon
which state you are in so you can see the state changes occur. This can be very helpful in
debugging.

e Be sure you keep track of which inputs and outputs are active low!

e Itis imperative that the first three dipswitches be in the off position throughout this lab. If
they are in the on position the wires will be kept low at all times, and you won’t be able to
communicate with the controller!

EECS 270: Introduction to Logic Design
University of Michigan—Spring 2005

LAB 7: Real-World Interfacing with a Nintendo Controller

5.1

51.1

51.2

5.1.3

5.2

Deliverables
Pre-lab (110 points)

Questions (20 points)

A) What is the period of the system clock? (2 points)

B) In order to generate a clock that has a period of 12ps, by how much would you have to divide
the system clock? (3 points)

C) Now, assume you can only divide the system clock by a power of two. What would be the
best value to divide by if you want a clock period as close to 12s as possible without going
under that value? (4 points)

D) If you never sent anything on Pulse (i.e., Pulse is always 0), but continued to send high pulses
on Latch at a rate of 60 Hz, what would you expect to happen on Data? Explain. (6 points)

E) In order to read information from the Data wire, you will need to clock a shift register. How
will you generate the clock for the shift register? (5 points)

Simulation (80 points)

You are asked to turn in two simulation printouts. During simulation you should be using the
divided clock as an input (if you have multiple divided clocks, use the fastest one) and not the
system clock!

1. Turnin a simulation which shows your Latch and Pulse signals being generated correctly
to perform a single polling operation of the controller. Your simulation should look much
like Figure 1 but will not include the data from the controller. (20 points)

2. Turn in a simulation which shows your Latch and Pulse signals being generated correctly
to perform two polling operation of the controller. Your simulation should look much like
Figure 2 but should show Latch and Pulse rather than just Pulse. (20 points)

3. Turn in a simulation which shows: (40 points)

e Your Latch and Pulse signals being generated correctly for a single polling
operation.

e You simulating Data returning all of the directions (Up, Down, Left, Right) not
being pressed and all of the other buttons (Start, Select, A, and B) being pressed.

e The value of your shift register during this time as a binary or hex number.

Supporting documentation (10 points)

Turn in a printout of your top-level schematic, any Verilog modules you wrote or other macros
you designed, and your ucf file. These should be printed at scales and orientations that are
readable.

In-lab (110+ points)

Download the bit file for the Nintendo Controller to the XESS board and verify that your
implementation is working properly. There are two parts to the in-lab assignment. The first is to
demonstrate that your bar LEDs are lighting when they should. (60 points) The second is to
demonstrate that your Easter Egg works correctly. (50 points)

Further, you may earn up to 20 points of extra credit for doing one or more of the following with
the Easter Egg. Note that these assignments can be fairly difficult. Extra credit will not be
accepted after the due date for the in-lab.
e Perform a “light show” of some sort (flashing various 7-segment lights) rather than
lighting a single LED when the correct code is entered. Again, the flashing should

EECS 270: Introduction to Logic Design
University of Michigan—Spring 2005

LAB 7: Real-World Interfacing with a Nintendo Controller

5.3

53.1

stop when start is pressed and should not interfere with the behavior of the bar LEDs.
(5 to 10 points depending upon the quality of the light show (at the GSls
discretion))

e Require that each button be pressed within one second of the last one being pressed.
(10 points)

e Inaddition to responding to the code we gave you, you can have your design react to
a different code that involves multiple buttons being pressed at once. This code
should involve at least two different multiple button presses. The old code must also
continue to work. (10 points)

Post-lab (80 points)

Prepare your lab report as described in the EECS270 Laboratory Overview handout. Make sure
you complete and include all parts of the report including the Cover Sheet, the Design Narrative
(30 points) section, a corrected pre-lab (20 points) and the Design Documentation (10 points)
section. Because of the design-intensive nature of this lab, we expect that your Design Narrative
will focus primarily on false starts, problems encountered, and design decisions made.

Under the hood (20 points)

Modify your design so that if the SPAREB button is pressed, the clock to all devices is divided by
an additional factor of 256 (this should only involve adding a clock divider and a MUX.)
Describe the behavior of the bar LEDs when the button is pressed. Explain this behavior.

EECS 270: Introduction to Logic Design
University of Michigan—Spring 2005

