
Electrical Engineering and Computer Science EECS373 - Design of Microprocessor-Based Systems

Digital Hydrometer

Chris Dionysopoulos, Adam Williams {cdiony, adamwill}@umich.edu

Introduction: Digital Hydrometer to assist in Specific Gravity calculations

- During the brewing process, there are many factors that can effect the end result of a good tasting high quality beer.
- One of the main tools that is used to gauge the quality at various points of a brew is the hydrometer
- Hydrometers measure the specific gravity of a liquid in relation to water. This calculation is dependent on external variables to be properly corrected.
- There are three different scales usually found on a hydrometer. These scales indicate the Specific Gravity, the alcohol by volume (ABV) and the sugar content of the brew.

Problem Description: Describe the problem in a few words

- There are many environmental factors that affect the accuracy of the hydrometers reading.
- Room temperature, liquid temperature and air pressure are the main factors to correct and account for in taking accurate measurements with a hydrometer.
- To adjust for temperature in calculations, the following formula is used:

Correction(@59F) = 1.313454 - 0.132674*T + 2.057793e-3*T*2 - 2.627634e-6*T*3 where T is in degrees F.

- Most of the hydrometers on the market are made of poorly manufactured glass and are prone to break easily
- In addition to the need to take accurate measurements for current and future uses, the only digital hydrometer sold for brewing is upwards of \$2500
- As a proof of concept this device was made using tools ranging in the hundreds of dollars.
- With a refined design, this cost can be brought down significantly

Proposed Solution: How did you solve the problem?

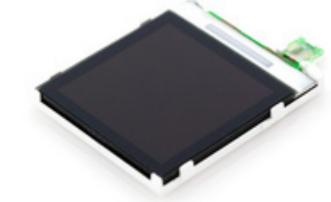
- To create a device that would help brewers with all the calculations needed to receive an accurate specific gravity, we combined various sensors and a microcontroller to save and display the correct data.
- Using a custom glass housing, we created a device that maintains the correct level of liquid to compare our specific gravity measurements against.
- Using a hall effect sensor, we are able to calculate the distance the hydrometer probe travels and receive the unadjusted specific gravity reading
- An infrared sensor calculates the temperature of the liquid.
- An external environment sensor finds the correct room temperature.
- To display the data, we interfaced with a 128x128 bit display that allows for the presentation of past measurements and the current readings.
- Two buttons on the device let the user navigate between historic settings, taking new measurements, and viewing the current readings in real time.

Communication & Sensors

- Analog Hall Effect Sensor
- Used for hydrometer reading
- A magnetic field reading that needs to be adjusted for distance measurements
- Allows for the separation of the sensors from the brew process for anti-contamination purposes

- Environment Temperature Sensor
 - Provides room temperature reading for calculation adjustments
 - I²C interface

- Infrared Temperature Sensor
- Separates the thermometer from the brew, allowing less contamination potential
- I²C interface



- I²C Bus
- SPI Bus

- Barometric Pressure Sensor
 - Uses an I²C interface

- Color LCD
 - 128x128
 - SPI Interface

Conclusion

Using easily accessible electronic parts, we were able to create a digital aid to the brewing process for a fraction of the price of the commercial options. This device allows for accurate calculations that take environmental variables into account and stores the data for future use. This option, though cumbersome in prototype, is the proof of concept we were looking for . In the future, we expect that home brewers with a technical interest will be able to build a similar device for their own use.

