
EECS	373	Fall	2017	Homework	#3	
Due	September	25th	on	Gradescope.		Late homework is not accepted.	

Name: __ unique name: ______________________

You are to turn in this assignment filling in the blanks as needed. Assignments that are not done on this worksheet or are
difficult to read will lose at least 50% of the possible points and we may not grade them at all. This is an individual
assignment; all work should be your own. 50 points.

1) Loaders,	Linkers,	and	Executables		

a) In	five	or	fewer	sentences,	explain	the	role	of	the	assembler	and	linker.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

b) Consider	the	Thumb	below.		Briefly	explain	why	the	label	“eoa”	is	at	a	higher	address	than	the	label	
“stop”	even	though	the	label	“eoa”	appears	first.	Note,	you	do	not	have	to	fill	up	all	the	space.	
(Source	code	modified	from		http://www.bravegnu.org/gnu-eprog/lds.html).	

	

		

	
	 	

2) Write	rewrite	the	function	“A”	in	UAL	assembly	which	does	the	same	thing	as	the	following	C	code.		You	
should	assume	“print”	is	some	ABI	compliant	function	which	takes	a	single	integer	argument	and	does	
something	with	“a.”	“B”	is	also	an	ABI	compliant	function.		(Note,	one	point	of	the	ABI	is	to	be	able	to	mix	C	
and	assembly	like	this,	the	linker	will	make	it	all	work!)	

void main(void)
{
 int a=2,b=6;

 b=A(a,b);
 a=a*b;
 print(b);
 print(a);

}
int A(int x, int y)
{
 int a;
 a=B(x+y, x-y);
 print(a);
 a=a*(x+y)
 return(a+x-y);
}

3) Write	a	short	UAL	assembly	program	which	every	time	the	button	is	pressed	toggles	the	light	(so	that	if	it’s	
off	pressing	the	button	turns	it	back	on	and	if	it’s	on	pressing	the	button	turns	it	off.		You	can	assume	the	
switch	is	debounced.		Be	sure	that	pressing	the	button	doesn’t	cause	the	light	to	quickly	flicker—rather	each	
button	press	(off	to	on)	should	cause	the	light	to	toggle.	The	button	is	at	address	0x5	and	the	LED	is	at	
address	0x4.	Assume	the	button	and	LED	are	active	high	and	that	code	for	initialization	is	already	written	for	
you.	

	
@assume code for initialization provided
main:	

	
	
	
	
	
	
	
	
	
	
	
	

	
	

	

	
	
	
	

a) The	same	as	part	a,	but	in	C	this	time.	

	 	

	
4) Draw	a	picture	of	two	APB	slave	devices	and	an	APB	master	device.	Draw	each	of	the	three	devices	with	all	

inputs	on	the	left	and	all	outputs	on	the	right.	It	should	be	clear	where	wires	are	shared	by	the	slave	devices	
and	where	they	have	their	own	wires.	Include	all	the	wires/busses	found	in	the	APB	specification,	which	can	
be	found	on	the	course	website.	You	may	attach	an	image	or	print,	complete,	and	scan	this	page.	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

5) Assume	you	have	a	memory-mapped	register	location	REG_FOO	on	a	32-bit	architecture.		Write	the	
additional	C	code	needed	to	toggle	bit	22	of	the	word	at	that	location	(that	is	change	it	from	a	1	to	a	0	or	a	1	
to	a	1).		The	code	should	be	written	so	that	no	complier	errors	occur.	[10	points]	

	
REG_FOO	location:	0x4005000	
	

