
Homework 4
Assigned: Monday 09/25; Due: Monday 10/02 at 1:40pm

The purpose of this assignment is to:

• Review interrupts and priority/preemption issues on our SmartFusion in lab. (22 points)

• Act as a refresher on how to work with pointers, especially function pointers, in C. (20 points)

• Touch on the new concept of weak references (first seen in lab 4)

• Begin thinking about how to use linked lists (10 points)

1. Look at these links to answer the following questions: MSS guide starting page 10, ARM NVIC reference, and

chapter 8 of The Definitive Guide To the ARM Cortex-M3.

a. How many different external interrupts does the NVIC on the SmartFusion support? [2]

b. What are the external interrupt numbers for FABINT, GPIO_0, and GPIO_1? [3]

c. If you want to enable the FAB_INT and TIMER_1_IRQ, what value(s) will you write to what memory
location(s)? [3]

2. Look at page B1-18 of http://www.eecs.umich.edu/courses/eecs373/readings/ARMv7-M_ARM.pdf. In your
own words, explain what priority grouping is. Your answer must include the word “preemption”. [5]

https://www.eecs.umich.edu/courses/eecs373/readings/Actel_SmartFusion_MSS_UserGuide.pdf
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0337e/Cihcffda.html
https://www.eecs.umich.edu/courses/eecs373/labs/refs/M3%20Guide.pdf
http://www.eecs.umich.edu/courses/eecs373/readings/ARMv7-M_ARM.pdf

3. You are working on a design for our SmartFusion which has 6 interrupt sources: A, B, C, D, E, and F. Recall
that the SmartFusion only implements the 5 highest priority bits, the other 3 are ignored. You want the
following to be true:

• A should be able to preempt any interrupt.

• B should be able to preempt any interrupt other than C and D

• C should be able to preempt any interrupt other than A. C should have a priority higher than B.

• D should be able to preempt only E and should have a higher priority than E or F.

• E should be able to preempt only F

a. List all PRIGROUP setting or settings you could use in this case. Assume no two interrupts can be

assigned the same priority. Provide your answer in 3-digit binary and explain. [3]

b. Indicate, in 8-bit binary, what priorities you will assign to each interrupt. Let us know which
PRIGROUP setting you are using (mainly if you have more than one PRIGROUP listed above). Again,
no two interrupts may be assigned the same priority. [6]

• PRIGROUP=________________________ (3-digit binary)

• A priority= ________________________ (8-digit binary)

• B priority= ________________________ (8-digit binary)

• C priority= ________________________ (8-digit binary)

• D priority= ________________________ (8-digit binary)

• E priority= ________________________ (8-digit binary)

• F priority= ________________________ (8-digit binary)

For problems 4 and 5 you will be again writing C code. Problems 4 and 5 will be as follows:

• 20 points: Everything works.

• 10 points: You put effort in but it doesn't quite work.

• 0 points: Little to no effort / nothing works / nothing submitted.

Grab a copy of the code from course website.

First things first, type make main && ./main and look at the output. Look over main.c and sort.c to try to
understand what the current code is doing. Specifically,

• How does main call the different sort functions in sort.c?

• How does main know how many sort functions there are? What is the purpose of the compare function?

4.

Add a third sort algorithm. Instead of implementing it yourself, use the built-in qsort from the C
standard library. For details on qsort, type man qsort. The qsort type signature doesn't quite match

the sorting_fn type signature, so you will need to write a wrapper function.

We suggest you first implement your algorithm and make necessary changes for problem 4 only in the
sort.c file. When you are done, type make check_main to check your work. After you are sure
you get the correct algorithm, write down all the code you add in the box for question 4.

5.
Next you will modify the sort functions to reverse the order they are sorting in. You will do this without
modifying sort.c. Type make reverse && ./reverse. Currently this will behave the same as

main. The difference between main and reverse is that reverse also links in reverse_sort.c. Add a
function to reverse_sort.c so that numbers are now sorted in descending order. You may find it
useful to consult Lab 4 for a refresher on weak links (also called weak references or weak symbols)
and/or you may wish to read https://en.wikipedia.org/wiki/Weak_symbol.

First do all of your work for problem 5 in reverse_sort.c. When you are done with this problem,

type make check to check your work. After you are sure you get the correct algorithm, write down all
the code you add in the box for Question 5.

Notes
As the readme file says, this has only been tested on the CAEN Linux load. It may work on other x86 Linux
machines (and in fact probably will) but we won’t support it on any other machine.

https://en.wikipedia.org/wiki/Weak_symbol

6. In Lab 5 you will be using a linked list to keep track of timers. Here you’ll be asked to do some basic linked

list coding and manipulation. For the homework questions, assume a doubly-linked list of integers.

a. Define a struct that encompasses the things that you need for a node in a doubly linked list. [2]

b. Complete the following function to return the length of a linked list using pointer iteration. [4]

c. Complete the following function to reverse the doubly linked list using pointers and return a pointer

to the new head. [4]

int length(struct node* head) {

}

node * reverseList(struct node* head) {

}

struct node {

};

	Assigned: Monday 09/25; Due: Monday 10/02 at 1:40pm
	Notes

