
Page 1 of 11

EECS 373 Midterm
Winter 2014

Name: ____________________________________ unique name: _______________

Sign the honor code:

I have neither given nor received aid on this exam nor observed anyone else doing so. Nor did I

discuss this exam with anyone after it was given to the rest of the class.

Scores:

Page Points

2 /12

3 /10

4 /15

6 /18

9 /30

10 /15

Total /100

NOTES:
1. Closed book/notes and no calculators.

2. There are 11 pages including this one. The last page is a reference sheet. You may wish

to rip it out.

3. Calculators are allowed, but no PDAs, Portables, Cell phones, etc.

4. Don’t spend too much time on any one problem. If you get stuck, move on!!!

5. You have about 80 minutes for the exam.

6. Be sure to show work and explain what you’ve done when asked to do so.

• Getting partial credit without showing work will be rare.

7. Throughout the exam “standard logic gates” means arbitrary input ANDs, ORs,

NANDs, NORs, XORs and XNORs as well as NOT gates.

Page 2 of 11

1) Multiple-choice/fill-in-the-blank [12 points, -2 per wrong or blank answer, minimum 0]

a. In Verilog an @* block is used to create combinational logic / sequential logic / a flip-flop.

b. 100 clock ticks of a 100MHz clock takes about __________ ns

c. A ____________ is when a combinational signal should stay at a level (0 or 1), but instead

changes to the other level for a short time.

d. When using an open collector scheme to drive wires on a bus means that if there are more
than one devices trying to drive the bus in different ways the result will be a logical 1 /
logical 0 / HiZ / creating a short circuit and letting out the “magic smoke”.

Page 3 of 11

2) Short answer. You should answer each question in three sentences or less. [10 points]

a. Explain why 0x5555 and 0x55550000 can’t both be instructions on the Cortex M3 [5]

Page 4 of 11

3) Say we have three potential interrupt sources, external exception numbers 50, 51 and 52. 52 is to
be capable of preempting the other two interrupts, and 51 should have a higher priority than 50, but
not be able to preempt it. The page following this one has a number of tables and other
information that you may find useful when solving this problem. [15 points]

a. Assuming PRIGROUP=6, provide priority levels for the three sources that would give the

desired preemption and priority between them. Provide your answers as 8-bit numbers in

hex. [3]

Priority level for 50: _____________ Priority level for 51: _____________

Priority level for 52: _____________

b. Write a segment of ARM assembly code which sets the priority level for external exception

number 50. [6]

c. Say that the interrupts and their ISRs had the following properties

Exception # Time the
interrupt
occurs at

ISR run time

50 0ms 5ms
51 3ms 3ms

52 4ms 2ms

At what time will the ISR for exception 50 finish running? Clearly justify your answer. [6]

Page 5 of 11

Page 6 of 11

4) Write an ARM assembly language procedure that implements the following C function in an EABI-
compliant manner and conforms to the following signature. Clearly comment your code so we can
figure out what we are doing and what value each register holds. Poorly commented/unclear code
will get points removed. You are to assume “printit()” is an ABI-compliant function that already
exists. [18 points]

uint32 Thing1(uint32 erf, uint32 x[])

{

 int y;

printit(x[erf]);

 if(x[erf]>erf)

 y=x[erf];

 else

 y=x[1];

 return(y+1);

}

Page 7 of 11

Vibration Sensing Design Problem
Engine knock occurs in a car engine when the piston fires before it should causing abnormal vibrations.
Engine controllers monitor these vibrations and adjust the engine timing to prevent this. Your job is to
monitor the vibrations and provide an alert to the engine management software when the vibrations
become excessive.

Excessive vibration is determined by simply measuring the number of vibrations over some time
interval. We don’t want to use processor time to do this, so you will accumulate the counts with a
simple 32-bit counter. Each low-to-high transition of the vibration sensor counts as a single vibration.
The counter will be reset on regular basis (called the “sampling interval”). If the counter exceeds some
fixed value (called the “count threshold”), an interrupt will be generated.

The sampling interval and count threshold are both to be writeable, while the current value of the
counter tracking the number of vibrations during the sampling interval is to be readable. The hardware
will specify both the sampling interval and the count threshold in terms of clock ticks of PCLK ticks. PCLK
is 100MHz.

Hardware available:
The following hardware devices are available (you may use as many of each as
you need).

• A 32-bit modulo1 counter with enable and reset. Its inputs are clock
and reset, while its output is simply the current count as a 32-bit
number.

• A 32-bit comparator that has two 32-bit inputs (X and Y) and three outputs (X>Y, X==Y, X<Y).

• Standard gates, flip-flops, MUXes, and registers (with enable and reset
as desired).

You will likely find it helpful to read the rest of the exam before solving any of the following parts.

1 Recall that a “modulo” counter simply wraps around when it reaches its maximum value. So a

2-bit modulo counter would count 0,1,2,3,0,1,2,3,0, etc.

32-bit Counter

En Q[31:0]

 Clk

R

32-bit Comparator

X[31:0] X>Y
 X==Y
Y[31:0] X<Y

 Clk

R

Page 8 of 11

Page 9 of 11

Interface to the APB bus

The kit has the following APB3 bus interface. The signal names are shown in bold. The ABP3 bus signals

follow APB3 timing and protocol. Read and write cycles are provided on the next page. PSEL is

configured to be “1” when memory locations 0x40050000-0x4005000F are accessed.

Bus Ready: PREADY

SmartFusion

Bus Clock: PCLK

Peripheral Select: PSEL

Peripheral Address: PADDR (8 bits)

APB Peripheral Write: PWRITE

APB Read Data: PRDATA (32 bits)

APB Write Data: PWDATA (32 bits)

Page 10 of 11

Part 1: Hardware [30 points]
Provide APB3 interfaces to the timer and counter such that.

• A write to location 0x40050000 is to set the sampling interval to be the value written.

• A write to location 0x40050004 is to set the count threshold to be the value written.

• A read from location 0x40050000 returns the number of vibrations in this sampling interval.

• An interrupt is driven for one clock tick with when the number of vibrations in the current
sampling interval exceeds the count threshold.

Shadow locations are acceptable.

PRDATA[31:0]

FABINT

PREADY

PWDATA[31:0]

PCLK

Vib Sensor

PWRITE

PENABLE

PSEL

PADDR[7:0]

Page 11 of 11

Part 2: Software [15 points]
You are to write and interrupt service routine in C that calls the function

void Knock_Alarm(int vibration_count, int sampling_interval)

and passes it the current vibration count and sampling interval. You are to provide the sampling interval
in microseconds (rounding as desired if needed).
Note: you are to assume the function Knock_Alarm() has been already written!

__attribute__ ((interrupt)) void Fabric_IRQHandler(void) {

	Vibration Sensing Design Problem
	Hardware available:

	Part 1: Hardware [30 points]
	Part 2: Software [15 points]

