
EECS 373 Midterm

Winter 2017

Name: ____________________________________ unique name: _______________

Sign the following honor code pledge.

I have neither given nor received aid on this exam nor observed anyone else doing so.

Scores:

Problem Points

1 /12

2 /12

3 /12

4 /13

5 /12

6 /13

7 /13

8 /13

Total /100

NOTES:

1. Closed book/notes. No calculators.
2. The references will be provided as a separate document.
3. Do not remove any pages from the test. We need to scan it.
4. No calculators, notes, books or resource not supplied as a part of the exam.
5. Don’t spend too much time on any one problem.
6. The easy problems are worth as many points as the hard ones. Do the easy problems

first.
7. You have 90 minutes for the exam.
8. Show work and make sure your reasoning is clear.

1) (12 pts.) Implement the following function using only NAND, NOR, and NOT gates. Your

implementation should be minimal and two-level. Do not assume access to complemented input

literals (e.g., you get a, b, and c as inputs, but not a’, b’, or c’).

f(a, b, c) = a'b'c + a'bc + abc + abc'

2) (12 pts.) For each description, fill in the blank with the letter associated with the correct tool.

A. objdump

B. as

C. objcopy

D. ld

E. make

F. gcc

G. nm

_____Combines object files and libraries into a single file, resolving symbols in the process.

_____Converts human-readable assembly language code into machine-readable object files.

_____Converts human-readable C language code into machine-readable object files.

_____Displays instructions and data in object files in human-readable form.

_____Displays symbol table in object or executable, including symbol resolution status.

_____Translates object files from one format to another, potentially stripping debugging

information and symbols in the process.

_____Builds a presence and modification time based dependency graph transitively connecting

build sources and build targets and executes build rules to traverse the graph, thus producing

build targets.

3) (13 pts.) Blinky the clown needs a new blinking nose. You are tasked with designing a module to

provide a signal for his new nose. Complete the following Verilog that implements the blinky module

with a 32-bit write only on-off MMIO register located at 0x40050000 and a 32-bit read and write

period MMIO register located at 0x40050004.

The light has two states: off, or pulsing with a 50% duty cycle and a period between 500-

1000ms. The period should be software configurable and the light should be turned off by

default. The light is active low and the least significant bit of the on-off register controls the

device (a register value of 0x1 should turn the light on). The system PCLK is 1MHz.

APB bus read and write timing diagrams are provided on the last page for your reference.

module blinky(

input PCLK,

input PRESERN,

input PSEL,

input PENABLE,

input [7:0] PADDR,

output PREADY,

output PSLVERR,

input PWRITE,

input [31:0] PWDATA,

output [31:0] PRDATA,

output light)

Use this page to answer Problem 4.

4) (12 pts.) Fill in the blank.

a) Arguments that are passed into subroutines are placed in registers

__________________________. If space is inadequate, the extra arguments are placed

in__________________________.

b) The result of a subroutine is placed into register________ or registers _______ and

_______ before returning.

c) When a subroutine is called, the address that the subroutine should return to is placed in

______________________.

d) The PC holds the address of _________________________________.

e) For this course, we are using ARM in ______________ endian mode.

f) Registers ___________ need to be saved by a subroutine before being used, while

registers ___________ need to be saved by a function before calling a subroutine.

g) To return from a subroutine, the assembly instruction ______________________ is

used.

5) (13 pts.) Write an ARM assembly language procedure that implements the following C function in

an EABI-compliant manner. Clearly comment your code. Label which register each value represents.

Poorly commented code can result in a loss of points. Write your answer on the next page.

The function “conv” is an ABI compliant function with the following prototype.

 uint32_t conv(uint32_t x);

uint32_t goblue(uint32_t x[], uint32_t y[], int n) {
 int i;
 int sumx = 0;
 int sumy = 0;
 for(i=0; i<n; i++){
 if(x[i] > y[i])
 sumx = conv(x[i])+sumx;
 else
 sumy = conv(y[i])+sumy;
 }
 return (sumy - sumx);
}

Use this space to answer Problem 6.

6) (13 pts.) Your task is to output a 100 Hz PWM signal by writing 0x1 and 0x0 to GPIO 1, which is

memory-mapped to at address 0x12345678. Your code must be written in C, and entirely implemented

in an interrupt service routine (ISR) of a count-up timer with a 10 MHz clock (named Timer_ISR) that

has both a timer compare register and timer overflow register, like that in Lab 5. The timer is already

configured to fire interrupts on both compare and overflow events, and a status register (where the 0th

bit signifies a compare event and the 1st bit signifies an overflow event) is located at 0x876543218.

The timer compare register can be found at 0x87654320, and the timer overflow register can be found

at 0x876543214.

At the end of each PWM period (every 1/100th of a second), please check register 0x45671234

for a duty cycle percentage (as an integer from 0 to 100). You do not have to worry about

values outside of that range. If the duty cycle percentage changes, you should immediately

change to outputting the new duty cycle percentage.

Register table map:

0x12345678: GPIO 1 (memory-mapped IO, PWM output)

0x45671234: PWM duty cycle percentage

0x876543210: Timer compare value

0x876543214: Timer overflow value

0x876543218: Timer interrupt status (If 0th bit is a 1, then the interrupt was a compare

interrupt. if 1st bit is 1, then an overflow interrupt. They are guaranteed to not conflict.)

// triggers whenever the 10 MHz timer reaches the compare value

void Timer_ISR (void) {

}

7) (13 pts.) The following is a two-part problem on GPIOs and interrupts.

Part 1: In Lab2, you have seen how to initialize and set GPIO using assembly. Now you will

implement the initGPIO in C rather than ARM assembly, and we provide you with setGPIO

function for PART2. Both functions take in an int argument gpioNum as GPIO number.

initGPIO initializes GPIO pins to be either input or output, but not both, depending on the value

of IO_mode argument. The function must return 0 if the target GPIO is already enabled for the

requested mode, and return 1 if it is not.

setGPIO sets GPIO pins to be either high or low depending on the value of vLevel(set to high if

vLevel is 1, set to low otherwise).

You don’t need to check the sanity of the input (the input will always be valid), and assume we

only have 32 GPIOs. If the GPIO pin is in output mode, setGPIO() will return 1 on success. If

the GPIO pin is not in output mode, setGPIO() will return 0.

See the reference material at the end of the problem.

#define INPUT_MODE 0

#define OUTPUT_MODE 1

#define GPIO_IN 0x40013084 // Read only bits for ports configured as inputs

#define GPIO_x_CFG 0x40013000 // GPIO configure register address

// NOTE: you don’t need to implement this function.

// vLevel can only be 0 or 1. 0 means low voltage level and 1 means high voltage level

int setGPIO(int gpioNum, int vLevel);

// IO_mode can only be INPUT_MODE or OUTPUT_MODE

int initGPIO(int gpioNum, int IO_mode) {

}

Part 2: Now you should take advantage of the two functions in PART1 to write a fabric interrupt

handler. Whenever the interrupt handler is invoked, you need to set GPIO 0 to input mode, wait for 1

ms, and read from GPIO 0 port, and output the opposite voltage level on GPIO 1. We have provided

the function wait_1ms() to wait for exactly 1 ms, so you don’t need to implement the waiting yourself.

Assume other routines might change the mode of GPIO 1.

void wait_1ms(void); // This function will wait for exactly 1 ms.

__attribute__ ((interrupt)) void Fabric_IRQHandler(void) {

 }

If you use this page for answers, write “See last page.” next to the relevant problem(s) and mark the

problem number(s) clearly on this page.

