EECS 373 Midterm
Winter 2017

Name: unique name:

Sign the following honor code pledge.

I have neither given nor received aid on this exam nor observed anyone else doing so.

Scores:
Problem | Points
1 /12
2 /12
3 /12
4 /13
9) /12
6 /13
7 /13
8 /13
Total /100
NOTES:
1. Closed book/notes. No calculators.
2. The references will be provided as a separate document.
3. Do not remove any pages from the test. We need to scan it.
4. No calculators, notes, books or resource not supplied as a part of the exam.
5. Don’t spend too much time on any one problem.
6. The easy problems are worth as many points as the hard ones. Do the easy problems

first.
You have 90 minutes for the exam.
8. Show work and make sure your reasoning is clear.

~

1) (12 pts.) Implement the following function using only NAND, NOR, and NOT gates. Your
implementation should be minimal and two-level. Do not assume access to complemented input
literals (e.g., you get a, b, and ¢ as inputs, but not a’, b’, or ¢’).

f(a, b, ¢) =a'b'c + a'bc + abc + abc'

2) (12 pts.) For each description, fill in the blank with the letter associated with the correct tool.

. objdump
as
objcopy
Id

make
gcc

nm

@TMmMoUOw»

______Combines object files and libraries into a single file, resolving symbols in the process.
_____ Converts human-readable assembly language code into machine-readable object files.
_____ Converts human-readable C language code into machine-readable object files.

_____ Displays instructions and data in object files in human-readable form.

____ Displays symbol table in object or executable, including symbol resolution status.

Translates object files from one format to another, potentially stripping debugging
information and symbols in the process.

Builds a presence and modification time based dependency graph transitively connecting
build sources and build targets and executes build rules to traverse the graph, thus producing
build targets.

3) (13 pts.) Blinky the clown needs a new blinking nose. You are tasked with designing a module to
provide a signal for his new nose. Complete the following Verilog that implements the blinky module

with a 32-bit write only on-off MMIO register located at 0x40050000 and a 32-bit read and write
period MMIO register located at 0x40050004.

The light has two states: off, or pulsing with a 50% duty cycle and a period between 500-
1000ms. The period should be software configurable and the light should be turned off by
default. The light is active low and the least significant bit of the on-off register controls the
device (a register value of 0x1 should turn the light on). The system PCLK is 1IMHz.

APB bus read and write timing diagrams are provided on the last page for your reference.

module blinky(

input PCLK,

input PRESERN,

input PSEL,

input PENABLE,

input [7:0] PADDR,
output PREADY,
output PSLVERR,
input PWRITE,

input [31:0] PWDATA,
output [31:0] PRDATA,
output light)

Use this page to answer Problem 4.

4) (12 pts.) Fill in the blank.

a)

b)

c)
d)

e)
f)

9)

Arguments that are passed into subroutines are placed in registers
. If space is inadequate, the extra arguments are placed

in .

The result of a subroutine is placed into register or registers and
before returning.

When a subroutine is called, the address that the subroutine should return to is placed in

The PC holds the address of .

For this course, we are using ARM in endian mode.

Registers need to be saved by a subroutine before being used, while
registers need to be saved by a function before calling a subroutine.
To return from a subroutine, the assembly instruction is
used.

5) (13 pts.) Write an ARM assembly language procedure that implements the following C function in
an EABI-compliant manner. Clearly comment your code. Label which register each value represents.
Poorly commented code can result in a loss of points. Write your answer on the next page.

The function “conv” is an ABI compliant function with the following prototype.

uint32_t conv(uint32_t x);

uint32 t goblue (uint32 t x[], uint32 t y[], int n) {

int i;
int sumx = 0;
int sumy = 0;
for (i=0; i<n; i++) {
if(x[1] > y[i])
sumx = conv(x[i])+sumx;
else
sumy = conv(y[i])+sumy;
}

return (sumy - sumx);

Use this space to answer Problem 6.

6) (13 pts.) Your task is to output a 100 Hz PWM signal by writing 0x1 and 0x0 to GPIO 1, which is
memory-mapped to at address 0x12345678. Your code must be written in C, and entirely implemented
in an interrupt service routine (ISR) of a count-up timer with a 10 MHz clock (named Timer_ISR) that
has both a timer compare register and timer overflow register, like that in Lab 5. The timer is already
configured to fire interrupts on both compare and overflow events, and a status register (where the Oth
bit signifies a compare event and the 1st bit signifies an overflow event) is located at 0x876543218.
The timer compare register can be found at 0x87654320, and the timer overflow register can be found
at 0x876543214.

At the end of each PWM period (every 1/100th of a second), please check register 0x45671234
for a duty cycle percentage (as an integer from 0 to 100). You do not have to worry about
values outside of that range. If the duty cycle percentage changes, you should immediately
change to outputting the new duty cycle percentage.

Register table map:

0x12345678: GPIO 1 (memory-mapped 10, PWM output)

0x45671234: PWM duty cycle percentage

0x876543210: Timer compare value

0x876543214: Timer overflow value

0x876543218: Timer interrupt status (If Oth bit is a 1, then the interrupt was a compare
interrupt. if 1st bit is 1, then an overflow interrupt. They are guaranteed to not conflict.)

I/ triggers whenever the 10 MHz timer reaches the compare value
void Timer_ISR (void) {

7) (13 pts.) The following is a two-part problem on GPIOs and interrupts.

Part 1: In Lab2, you have seen how to initialize and set GPIO using assembly. Now you will
implement the initGPIO in C rather than ARM assembly, and we provide you with setGPIO
function for PART2. Both functions take in an int argument gpioNum as GP1O number.

initGPI1O initializes GPIO pins to be either input or output, but not both, depending on the value
of 10_mode argument. The function must return 0 if the target GPIO is already enabled for the
requested mode, and return 1 if it is not.

setGPIO sets GPIO pins to be either high or low depending on the value of vLevel(set to high if
vLevel is 1, set to low otherwise).

You don’t need to check the sanity of the input (the input will always be valid), and assume we
only have 32 GPIOs. If the GPIO pin is in output mode, setGPIO() will return 1 on success. If
the GPI10O pin is not in output mode, setGPIO() will return 0.

See the reference material at the end of the problem.

#define INPUT_MODE 0

#define OUTPUT _MODE 1

#define GPIO_IN 0x40013084 // Read only bits for ports configured as inputs
#define GP1IO_x_CFG 0x40013000 // GPIO configure register address

I/ NOTE: you don’t need to implement this function.
I/ vLevel can only be 0 or 1. 0 means low voltage level and 1 means high voltage level
int setGP1O(int gpioNum, int vLevel);

// 10_mode can only be INPUT_MODE or OUTPUT_MODE
int initGPIO(int gpioNum, int IO_mode) {

Part 2: Now you should take advantage of the two functions in PART1 to write a fabric interrupt
handler. Whenever the interrupt handler is invoked, you need to set GPIO 0 to input mode, wait for 1
ms, and read from GPI10O 0 port, and output the opposite voltage level on GPIO 1. We have provided
the function wait 1ms() to wait for exactly 1 ms, so you don’t need to implement the waiting yourself.
Assume other routines might change the mode of GPIO 1.

void wait_1ms(void); // This function will wait for exactly 1 ms.

__attribute__ ((interrupt)) void Fabric_IRQHandler(void) {

InitGPIO task - In the case of the GPIO peripheral, we have two specific memory locations of interest. The first one is the configuration register. Note
that these are not like the Cortex-M3 registers r0-r15. We just use the name register to indicate a specific location in memory. The microcontroller
subsystem has 32 1/0 lines, and each line has its own configuration register. The memory location starts at 0x40013000 for 17O line 0 (GPICQ). Each
register is 32 bit long, and since the memory is byte indexed, we increment this memory location by 4 1o find the configuration register for the other 110
lines, |.e., the configuration register for GPIO /s at (0x40013000 + I°4).

The bits in the configuration register have a specific meaning. The following table is a summary of the different configuration possibilities. To see
further description, look at the "Actel SmartFusion MSS User's Guide, Revision 1° on page 317.

Table 18-2 « GPIO_x_CFG

Bit Reset

Number Name R/W Value Description

7:5 GPIOINT_TYPE | RW 0b000 |See Table 18-3 on page 318.

4 Reserved RW 0b0 Reserved

3 GPINTEN R/W 0b0 0 = Interrupt disabled.
1= Interrupt enabled.

2 GPO_OUTBUFEN | RW 0b0 0 = Disable output buffer if signal routed through IOMUX
to IOBUF (dependent on IOMUX setting).
1 = Enable output buffer if signal routed through IOMUX
to IOBUF (dependent on IOMUX setting).

1 GPINEN RW 0b0 0 = Input register disabled.
1 = Input register enabled.

0 GPOUTEN RW 0b0 0 = Output register disabled.
1 = Output register enabled.

As we want our WO lines 1o be output, we will have to write Ox1 into the configuration registers.

setGPIO task - Once we configured all the /0 lines we need, we can set their status with the output register GPIO_OUT located at 0x40013088.
Every bit inside this register represents one 1O line. Thus, clearing bit /to 0, will pull GPIO /low, while setting bit /to 1, will pull GPIO / high,

Table 21-2 » SmartFusion Master Register Map {continued)

Register Name Address |R/W /| ResetValue Description
GPIO_x_CFG (x =0) 0x40013000 | RAW Ox0 GPIO Configuration register
for bit0
RAW
GPIO_x_CFG (x = 31) 0x4001307C | RW 0x0 GPIO Configuration register
for bit 31
GPIO_IRQ 0x40013080 | RAW 0x0 Interrupt Status Register
GPIO_IN 0x40013084 | R Ox0 Read only bits for ports
configured as inputs
GPIO_OQUT 0x40013088 | RW Ox0 Readiwrite bits for ports
configured as outputs

If you use this page for answers, write “See last page.” next to the relevant problem(s) and mark the
problem number(s) clearly on this page.

