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Course goals

 Embedded system design
 Debugging complex systems
 Communication and marketing
 A head start on a new product or research idea



What is an embedded system?

An (application-specific) computer
within something else

that is not generally regarded as a computer.



Embedded, everywhere



Embedded systems market

Dominates general-purpose computing 
market in volume.

Similar in monetary size to general-purpose 
computing market.

Growing at 15% per year, 10% for general-
purpose computing. 

Car example: half of value in embedded 
electronics, from zero a few decades ago.
  



Common requirements

Timely (hard real-time)
Wireless
Reliable
First time correct
Rapidly implemented
Low price
High performance
Low power
Embodying deep domain knowledge
Beautiful



Example design process



What is driving the
embedded everywhere trend?

Technology trends

Application innovations
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Moore’s Law (a statement about economics):
IC transistor count doubles every 18-24 months

Photo Credit: Intel
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Price falls dramatically, and enables new applications
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Computers per person
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     “Roughly every decade a 
new, lower priced computer 
class forms based on a new 

programming platform, 
network, and interface 

resulting in new usage and 
the establishment of a new 

industry.”

- Gordon Bell [1972,2008]

Bell’s Law: A new computer class every decade



Technology Scaling
 Moore’s Law

 Made transistors cheap
 Dennard Scaling

 Made them fast
 But power density undermines

 Result
 Fixed transistor count

 Exponentially lower cost
 Exponentially lower power

 Small, cheap, and low-power
 Microcontrollers
 Sensors
 Memory
 Radios

Technology Innovations
 MEMS technology

 Micro-fabricated sensors
 New memories

 New cell structures (11T)
 New tech (FeRAM, FinFET)

 Near-threshold computing
 Minimize active power
 Minimize static power

 New wireless systems
 Radio architectures
 Modulation schemes

 Energy harvesting

What is driving Bell’s Law?



Corollary to Moore’s Law

UMich Phoenix Processor
Introduced 2008
Initial clock speed

106 kHz @ 0.5V Vdd
Number of transistors

92,499
Manufacturing technology

0.18 µ
Photo credits: Intel, U. Michigan

15x size decrease

40x transistors

55x smaller λ



Broad availability of inexpensive, low-power, 32-bit MCUs
(with enough memory to do interesting things)



Hendy’s “Law”:
Pixels per dollar doubles annually

Credit: Barry Hendy/Wikipedia

G. Kim, Z. Foo, Y, Lee, P. Pannuto, Y-S. Kuo, B. Kempke, M. Ghaed, S. Bang, I. Lee, Y. Kim, S. Jeong, P. Dutta, D. Sylvester, D. Blaauw,
“A Millimeter-Scale Wireless Imaging System with Continuous Motion Detection and Energy Harvesting,
In Symposium of VLSI Technology (VLSI’14), Jun. 2014.



Radio technologies enabling pervasive computing, IoT

Source: Steve Dean, Texas Instruments
http://eecatalog.com/medical/2009/09/23/current-and-future-trends-in-medical-electronics/
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Established commun interfaces: 802.15.4, BLE, NFC

 IEEE 802.15.4 (a.k.a. “ZigBee” stack)
 Workhorse radio technology for sensornets
 Widely adopted for low-power mesh protocols
 Middle (6LoWPAN, RPL) and upper (CoAP layers)
 Can last for years on a pair of AA batteries

 Bluetooth Smart
 Short-range RF technology
 On phones and peripherals
 Can beacon for years on coin cells

 Near-Field Communications (NFC)
 Asymmetric backscatter technology
 Small (mobile) readers in smartphones
 Large (stationary) readers in infrastructure
 New: ambient backscatter communications



Emerging interfaces: ultrasonic, light, vibration

 Ultrasonic
 Small, low-power, short-range
 Supports very low-power wakeup
 Can support pairwise ranging of nodes

 Visible Light
 Enabled by pervasive LEDs and cameras
 Supports indoor localization and comms
 Easy to modify existing LED lighting

 Vibration
 Pervasive accelerometers
 Pervasive Vibration motors
 Bootstrap desktop area context



MEMS Sensors:
Rapidly falling price and power of accelerometers

[Analog Devices, 2009]
ADXL345

10 µA @ 10 Hz @ 6 bits

25 µA @ 25 Hz Price
Power

[ST Microelectronics,
2009]

O(mA)

[Analog Devices, 2012]

ADXL362

1.8 µA @ 100 Hz @ 2V
300 nA wakeup mode



Non-volatile memory capacity & read/write bandwidth

Lower capacity but
Higher R/W speeds

and
Lower energy per
atomic operation

and
High write
endurance



NRAM

 Nonvolatile
 Fast as DRAM
 Vapor(hard)ware
 May happen



Energy harvesting and storage:

Thermoelectric Ambient
Energy Harvester [PNNL]

Shock Energy Harvesting
CEDRAT Technologies

Electrostatic Energy
Harvester [ICL]

Thin-film batteries

RF [Intel]

Piezoelectric
[Holst/IMEC]

Clare Solar Cell



Growing application domains

 Wearable
 Social
 Location-aware
 IoT: integrated with physical world, networked
 Automated transportation
 Medical



My observation

 Every new class of computer systems will initially be seen as a 
toy by many or most

 As it becomes socially and commercially important, nearly 
everybody will act as if it was always obvious this would happen

 … even those who claimed it would always be a toy.

 If logic dictates something, ignore the naysayers.
 But that logic better consider potential customers.



Embedded, Everywhere Example - Stryd

What?
 
 Tiny wearable embedded 

system
 Wireless communication
 Integrated signal processing
 Careful power management
 Unconventional sensors

Lionel Sanders setting Ironman Triathlon 
World Record wearing Stryd

Why?
 
 Lets athletes precisely control 

effort when training and racing 
so they can run faster 



Why study 32-bit MCUs and FPGAs?



MCU-32  and PLDs are tied in embedded market share



What differentiates these?

FPGA                                  Microprocessor



Microcontroller FPGA



Modern FPGAs: best of both worlds!



Why study the ARM architecture
(and the Cortex-M3 in particular)?



Lots of manufacturers ship ARM products



ARM is the big player

 ARM has a huge market share
 15-billion chips shipped in 2015
 >90% of smartphone market
 10% of notebooks

 Heavy use in general embedded systems
 Cheap to use
 ARM appears to get an average of 8¢ per device 

(averaged over cheap and expensive chips) 
 Flexible: spin your own designs

 Intel history
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Course goals

 Embedded system design
 Debugging complex systems
 Communication and marketing
 A head start on a new product or research idea



Prerequisites

 EECS 270: Introduction to Logic Design
 Combinational and sequential logic design
 Logic minimization, propagation delays, timing

 EECS 280: Programming and Intro Data Structures
 C programming
 Algorithms (e.g., sort) and data structures (e.g., lists)

 EECS 370: Introduction to Computer Organization
 Basic computer architecture
 CPU control/datapath, memory, I/O
 Compiler, assembler



Topics

 Memory-mapped I/O
 The idea of using memory addressed to talk to input 

and output devices.
 Switches, LEDs, hard drives, keyboards, motors

 Interrupts
 How to get the processor to become “event driven” 

and react to things as they happen.

 Working with analog inputs
 Interfacing with the physical world.

 Common devices and interfaces
 Serial buses, timers, etc.



Example: Memory-mapped I/O

 Enables program to communicate directly with hardware
 Will use in Lab 3
 Write memory to control motor
 Read memory to read sensors



Example: Anatomy of a timer system

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm); 
  input clr, ena, clk;
  output alrm;
  reg alrm;
  reg [3:0] count;

  always @(posedge clk) begin
    alrm <= 0;
    if (clr) count <= 0;
    else count <= count+1;
  end
endmodule

...
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
  timer_handler_t handler;
  uint32_t time;
  uint8_t mode;
  timer_t* next_timer;
} timer_t;

timer_tick:
  ldr r0, count;
  add r0, r0, #1
  ... 



Grades

 Project and Exams tend to be the major 
differentiators.

 Class median is generally B

Labs 24%

Project 30%

Midterm 1 16%

Midterm 2 16%

Homework 7%

Presentations 7%



Time

 This is a time-consuming class
 2-3 hours/week in lecture
 8-12 hours/week working in lab

 Expect more during project time; some labs are a bit 
shorter.

 ~20 hours (total) working on homework
 ~20 hours (total) studying for exams.
 ~8 hour (total) on your oral presentation

 Averages out to about 15-20 hours/week pre-
project and about 20 during the project…
 This is more than I would like, but we’ve chosen to use 

industrial-strength tools, which take time to learn.



Labs

 7 labs
1. FPGA + Hardware Tools
2. MCU + Software Tools
3. Memory + Memory-Mapped I/O
4. Interrupts
5. Timers and Counters
6. Serial Bus Interfacing
7. Data Converters (e.g., ADCs/DACs)

 Difficulty ramps up until Lab 6.

 Labs are very time consuming.
 As noted, students estimated 8-12 hours per lab with one lab 

(which varied by group) taking longer.



Open-Ended Project

 Goal: learn how to build embedded systems
 By building an embedded system
 Work in teams
 You design your own project 

 Will provide list.

 Can define own goal.

 Major focus of the last third of the class.

 Important to start early.
 After labs end, some slow down.
 That’s fatal.

 This is the purpose and focus of the course.



Homework

 7 assignments
 First (review assignment) due Wednesday
 Definitions

 High-Z
 Drive
 Bus



Exams

 Two midterm exams.
 Done when focus switches to project.
 32% of grade.
 Higher (grade, not time) variance than project.



Office hours

 Robert Dick: 3:00-4:30 Tu, Th in 2417-E EECS
 Will often be in lab
 TA and Matthew's hours on website
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Verilog

 Not covered in course
 Review 270 material
 Do review homework problems
 Trial and error may work for Lab 1

 Won’t work for project
 Understand key differences w. SW languages (e.g., C)

 E.g., nonblocking statement semantics



Net states

 What is a bus?
 What does “drive” mean?
 What does Hi-Z (high impedance) mean?
 Get started on HW1 before Monday.

 Ask questions in class or on Piazza if you need help with definitions.
 Concepts should have been covered in EECS 270



Crash course in debugging

 Biggest difference between experienced and novice engineers
 Knowing your own mind's capabilities

 Complexity scales superlinearly in system size
 Heuristics
 Get something insanely simple working and grow it
 Verify the obvious
 Verify in order of dependency



Actel’s SmartFusion Evaluation Kit 



     A2F200M3F-FGG484ES 
 200,000 System FPGA gates, 256 KB flash memory, 64 KB SRAM, and 

additional distributed SRAM in the FPGA fabric and external memory 
controller

 Peripherals include Ethernet, DMAs, I2Cs, UARTs, timers, ADCs, DACs and 
additional analog resources

 USB connection for programming and debug from Actel's design tools
 USB to UART connection to UART_0 for HyperTerminal examples
 10/100 Ethernet interface with on-chip MAC and external PHY
 Mixed-signal header for daughter card support



“Smart Design” configurator



Eclipse-based “Actel SoftConsole IDE”



Debugger is GDB-based.  Includes command line.



An embedded system



Major elements of an Instruction Set Architecture
(registers, memory, word size, endianess, conditions, instructions, addressing modes)

32-bits 32-bits

Endianess

 mov r0, #0x1

 ld  r1, [r0,#5]

      r1=mem((r0)+5)

 bne loop

 subs r2, #1

Endianess



Endianness

                              Memory     Value
                              Offset  (LSB) (MSB)
                              ======  ===========
uint8_t a  = 1;               0x0000  01 02 FF 00
uint8_t b  = 2;
uint16_t c = 255; // 0x00FF
uint32_t d = 0x12345678;      0x0004  78 56 34 12

 Little-Endian (default)
 LSB is at lower address

 Big-Endian
 MSB is at lower address

                              Memory     Value
                              Offset  (LSB) (MSB)
                              ======  ===========
uint8_t a  = 1;               0x0000  01 02 00 FF
uint8_t b  = 2;
uint16_t c = 255; // 0x00FF
uint32_t d = 0x12345678;      0x0004  12 34 56 78



Addressing: Big Endian vs Little Endian (370 slide)

 Endianness: ordering of bytes within a word
 Little - increasing numeric significance with increasing 

memory addresses
 Big – the opposite, most significant byte first
 MIPS is big endian, x86 is little endian, ARM supports 

both



Instruction encoding

 Instructions are encoded in machine language opcodes

Instructions
movs r0, #10

movs r1, #0

A
RM

v7
 A

RM

Register Value      Memory Value
001|00|000|00001010 (LSB) (MSB)
(msb)         (lsb) 0a 20 00 21
001|00|001|00000000



Assembly example

data:
        .byte 0x12, 20, 0x20, -1
func:
        mov r0, #0
        mov r4, #0
        movw   r1, #:lower16:data
        movt   r1, #:upper16:data
top:    

 # ldrb   r2, [r1],#1
        ldrb r2, [r1]
        add r1, r1, #1
        add r4, r4, r2
        add r0, r0, #1
        cmp r0, #4
        bne top



Instructions used

 mov
 Moves data from register or immediate.
 Or also from shifted register or immediate!

 the mov assembly instruction maps to a bunch of 
different encodings!

 If immediate it might be a 16-bit or 32-bit instruction.
 Not all values possible
 why?

 movw
 Actually an alias to mov.

 “w” is “wide”
 hints at 16-bit immediate.



From the ARMv7-M Architecture Reference Manual
(posted on the website under references)

There are similar entries for
move immediate, move shifted
(which actually maps to different 
instructions), etc.



Directives

 #:lower16:data
 What does that do?
 Why?





Loads!

 ldrb?
 ldrsb?



Assembly example

data:
        .byte 0x12, 20, 0x20, -1
func:
        mov r0, #0
        mov r4, #0
        movw   r1, #:lower16:data
        movt   r1, #:upper16:data
top:    

 # ldrb   r2, [r1],#1
        ldrb r2, [r1]
        add r1, r1, #1
        add r4, r4, r2
        add r0, r0, #1
        cmp r0, #4
        bne top



Done.
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