
EECS 373
Design of Microprocessor-Based Systems

Website: https://www.eecs.umich.edu/courses/eecs373/

Robert Dick
University of Michigan

Lecture 1: Introduction, ARM ISA

September 6 2017

Many slides from Mark Brehob

Teacher

Robert Dick
http://robertdick.org/
dickrp@umich.edu

 EECS Professor
 Co-founder, CEO of profitable direct-

to-consumer athletic wearable
electronics company (Stryd)

 Visiting Professor at Tsinghua
Univeristy

 Graduate studies at Princeton
 Visiting Researcher at NEC Labs,

America, where technology went into
their smartphones

 ~100 research papers on embedded
system design

Lab instructor

 Matthew Smith
 matsmith@umich.edu
 Head lab instructor
 15 years of 373 experience
 He has seen it before
 … but he’ll make you
figure it out yourself

TAs

 Took EECS 373
 Jon Toto <jontoto@umich.edu>
 Brennan Garrett <bdgarr@umich.edu>
 Thomas Deeds <deedstho@umich.edu>
 Melinda Kothbauer <mkothbau@umich.edu>

mailto:jontoto@umich.edu
mailto:bdgarr@umich.edu
mailto:deedstho@umich.edu
mailto:mkothbau@umich.edu

Course goals

 Embedded system design
 Debugging complex systems
 Communication and marketing
 A head start on a new product or research idea

What is an embedded system?

An (application-specific) computer
within something else

that is not generally regarded as a computer.

Embedded, everywhere

Embedded systems market

Dominates general-purpose computing
market in volume.

Similar in monetary size to general-purpose
computing market.

Growing at 15% per year, 10% for general-
purpose computing.

Car example: half of value in embedded
electronics, from zero a few decades ago.

Common requirements

Timely (hard real-time)
Wireless
Reliable
First time correct
Rapidly implemented
Low price
High performance
Low power
Embodying deep domain knowledge
Beautiful

Example design process

What is driving the
embedded everywhere trend?

Technology trends

Application innovations

Outline

Technology Trends

Course Description/Overview

Review, Tools Overview, ISA

Moore’s Law (a statement about economics):
IC transistor count doubles every 18-24 months

Photo Credit: Intel

1950 1960 1970 1980 1990 2000 2010 2020
100m

1

10

100

1k

10k

100k

1M

10M

100M

1G

10G

100G

1T

10T

S
iz

e
(m

m
3)

Computer volume shrinks by 100x every decade

100x smaller
every decade

[Nakagawa08]

Mainframe

Personal
Computer

Workstation

Smart
Sensors

1 per Enterprise

1 per
Professional

1 per person

Ubiquitous

1 per Family

1 per Engineer Laptop

100 – 1000’s
per person

Price falls dramatically, and enables new applications

1950 1960 1970 1980 1990 2000 2010 2020
0.01

0.1

1

10

100

1000

10000

100000

In
fl

at
io

n
 A

d
ju

st
ed

 P
ri

ce
 (

10
00

s
o

f
U

S
D

)

Mainframe

Personal
Computer

Workstation

Smart
Sensors

Ubiquitous

Laptop

Computers per person

1950 1960 1970 1980 1990 2000 2010 2020
100m

1

10

100

1k

10k

100k

1M

10M

100M

1G

10G

100G

1T

10T

S
iz

e
(m

m
3)

Mainframe

Mini
Computer

Personal
Computer

Workstation

Smartphone

Smart
Sensors

1 per Enterprise

1 per Company

1 per
Professional

1 per person

Ubiquitous

1 per Family

1 per Engineer Laptop

100 – 1000’s
per person

lo
g

 (
p

eo
p

le
 p

er
 c

o
m

p
u

te
r)

[Bell et al. Computer,
1972, ACM, 2008]

 “Roughly every decade a
new, lower priced computer
class forms based on a new

programming platform,
network, and interface

resulting in new usage and
the establishment of a new

industry.”

- Gordon Bell [1972,2008]

Bell’s Law: A new computer class every decade

Technology Scaling
 Moore’s Law

 Made transistors cheap
 Dennard Scaling

 Made them fast
 But power density undermines

 Result
 Fixed transistor count

 Exponentially lower cost
 Exponentially lower power

 Small, cheap, and low-power
 Microcontrollers
 Sensors
 Memory
 Radios

Technology Innovations
 MEMS technology

 Micro-fabricated sensors
 New memories

 New cell structures (11T)
 New tech (FeRAM, FinFET)

 Near-threshold computing
 Minimize active power
 Minimize static power

 New wireless systems
 Radio architectures
 Modulation schemes

 Energy harvesting

What is driving Bell’s Law?

Corollary to Moore’s Law

UMich Phoenix Processor
Introduced 2008
Initial clock speed

106 kHz @ 0.5V Vdd
Number of transistors

92,499
Manufacturing technology

0.18 µ
Photo credits: Intel, U. Michigan

15x size decrease

40x transistors

55x smaller λ

Broad availability of inexpensive, low-power, 32-bit MCUs
(with enough memory to do interesting things)

Hendy’s “Law”:
Pixels per dollar doubles annually

Credit: Barry Hendy/Wikipedia

G. Kim, Z. Foo, Y, Lee, P. Pannuto, Y-S. Kuo, B. Kempke, M. Ghaed, S. Bang, I. Lee, Y. Kim, S. Jeong, P. Dutta, D. Sylvester, D. Blaauw,
“A Millimeter-Scale Wireless Imaging System with Continuous Motion Detection and Energy Harvesting,
In Symposium of VLSI Technology (VLSI’14), Jun. 2014.

Radio technologies enabling pervasive computing, IoT

Source: Steve Dean, Texas Instruments
http://eecatalog.com/medical/2009/09/23/current-and-future-trends-in-medical-electronics/

Highe
r P

ower

Lo
wer E

ner
gy p

er

Ato
mic O

per
at

ion

Established commun interfaces: 802.15.4, BLE, NFC

 IEEE 802.15.4 (a.k.a. “ZigBee” stack)
 Workhorse radio technology for sensornets
 Widely adopted for low-power mesh protocols
 Middle (6LoWPAN, RPL) and upper (CoAP layers)
 Can last for years on a pair of AA batteries

 Bluetooth Smart
 Short-range RF technology
 On phones and peripherals
 Can beacon for years on coin cells

 Near-Field Communications (NFC)
 Asymmetric backscatter technology
 Small (mobile) readers in smartphones
 Large (stationary) readers in infrastructure
 New: ambient backscatter communications

Emerging interfaces: ultrasonic, light, vibration

 Ultrasonic
 Small, low-power, short-range
 Supports very low-power wakeup
 Can support pairwise ranging of nodes

 Visible Light
 Enabled by pervasive LEDs and cameras
 Supports indoor localization and comms
 Easy to modify existing LED lighting

 Vibration
 Pervasive accelerometers
 Pervasive Vibration motors
 Bootstrap desktop area context

MEMS Sensors:
Rapidly falling price and power of accelerometers

[Analog Devices, 2009]
ADXL345

10 µA @ 10 Hz @ 6 bits

25 µA @ 25 Hz Price
Power

[ST Microelectronics,
2009]

O(mA)

[Analog Devices, 2012]

ADXL362

1.8 µA @ 100 Hz @ 2V
300 nA wakeup mode

Non-volatile memory capacity & read/write bandwidth

Lower capacity but
Higher R/W speeds

and
Lower energy per
atomic operation

and
High write
endurance

NRAM

 Nonvolatile
 Fast as DRAM
 Vapor(hard)ware
 May happen

Energy harvesting and storage:

Thermoelectric Ambient
Energy Harvester [PNNL]

Shock Energy Harvesting
CEDRAT Technologies

Electrostatic Energy
Harvester [ICL]

Thin-film batteries

RF [Intel]

Piezoelectric
[Holst/IMEC]

Clare Solar Cell

Growing application domains

 Wearable
 Social
 Location-aware
 IoT: integrated with physical world, networked
 Automated transportation
 Medical

My observation

 Every new class of computer systems will initially be seen as a
toy by many or most

 As it becomes socially and commercially important, nearly
everybody will act as if it was always obvious this would happen

 … even those who claimed it would always be a toy.

 If logic dictates something, ignore the naysayers.
 But that logic better consider potential customers.

Embedded, Everywhere Example - Stryd

What?

 Tiny wearable embedded

system
 Wireless communication
 Integrated signal processing
 Careful power management
 Unconventional sensors

Lionel Sanders setting Ironman Triathlon
World Record wearing Stryd

Why?

 Lets athletes precisely control

effort when training and racing
so they can run faster

Why study 32-bit MCUs and FPGAs?

MCU-32 and PLDs are tied in embedded market share

What differentiates these?

FPGA Microprocessor

Microcontroller FPGA

Modern FPGAs: best of both worlds!

Why study the ARM architecture
(and the Cortex-M3 in particular)?

Lots of manufacturers ship ARM products

ARM is the big player

 ARM has a huge market share
 15-billion chips shipped in 2015
 >90% of smartphone market
 10% of notebooks

 Heavy use in general embedded systems
 Cheap to use
 ARM appears to get an average of 8¢ per device

(averaged over cheap and expensive chips)
 Flexible: spin your own designs

 Intel history

Outline

Technology Trends

Course Description/Overview

Review, Tools Overview, ISA start

Course goals

 Embedded system design
 Debugging complex systems
 Communication and marketing
 A head start on a new product or research idea

Prerequisites

 EECS 270: Introduction to Logic Design
 Combinational and sequential logic design
 Logic minimization, propagation delays, timing

 EECS 280: Programming and Intro Data Structures
 C programming
 Algorithms (e.g., sort) and data structures (e.g., lists)

 EECS 370: Introduction to Computer Organization
 Basic computer architecture
 CPU control/datapath, memory, I/O
 Compiler, assembler

Topics

 Memory-mapped I/O
 The idea of using memory addressed to talk to input

and output devices.
 Switches, LEDs, hard drives, keyboards, motors

 Interrupts
 How to get the processor to become “event driven”

and react to things as they happen.

 Working with analog inputs
 Interfacing with the physical world.

 Common devices and interfaces
 Serial buses, timers, etc.

Example: Memory-mapped I/O

 Enables program to communicate directly with hardware
 Will use in Lab 3
 Write memory to control motor
 Read memory to read sensors

Example: Anatomy of a timer system

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

...
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

Grades

 Project and Exams tend to be the major
differentiators.

 Class median is generally B

Labs 24%

Project 30%

Midterm 1 16%

Midterm 2 16%

Homework 7%

Presentations 7%

Time

 This is a time-consuming class
 2-3 hours/week in lecture
 8-12 hours/week working in lab

 Expect more during project time; some labs are a bit
shorter.

 ~20 hours (total) working on homework
 ~20 hours (total) studying for exams.
 ~8 hour (total) on your oral presentation

 Averages out to about 15-20 hours/week pre-
project and about 20 during the project…
 This is more than I would like, but we’ve chosen to use

industrial-strength tools, which take time to learn.

Labs

 7 labs
1. FPGA + Hardware Tools
2. MCU + Software Tools
3. Memory + Memory-Mapped I/O
4. Interrupts
5. Timers and Counters
6. Serial Bus Interfacing
7. Data Converters (e.g., ADCs/DACs)

 Difficulty ramps up until Lab 6.

 Labs are very time consuming.
 As noted, students estimated 8-12 hours per lab with one lab

(which varied by group) taking longer.

Open-Ended Project

 Goal: learn how to build embedded systems
 By building an embedded system
 Work in teams
 You design your own project

 Will provide list.

 Can define own goal.

 Major focus of the last third of the class.

 Important to start early.
 After labs end, some slow down.
 That’s fatal.

 This is the purpose and focus of the course.

Homework

 7 assignments
 First (review assignment) due Wednesday
 Definitions

 High-Z
 Drive
 Bus

Exams

 Two midterm exams.
 Done when focus switches to project.
 32% of grade.
 Higher (grade, not time) variance than project.

Office hours

 Robert Dick: 3:00-4:30 Tu, Th in 2417-E EECS
 Will often be in lab
 TA and Matthew's hours on website

Outline

Technology Trends

Course Description/Overview

Review, Tools overview, ISA start

Verilog

 Not covered in course
 Review 270 material
 Do review homework problems
 Trial and error may work for Lab 1

 Won’t work for project
 Understand key differences w. SW languages (e.g., C)

 E.g., nonblocking statement semantics

Net states

 What is a bus?
 What does “drive” mean?
 What does Hi-Z (high impedance) mean?
 Get started on HW1 before Monday.

 Ask questions in class or on Piazza if you need help with definitions.
 Concepts should have been covered in EECS 270

Crash course in debugging

 Biggest difference between experienced and novice engineers
 Knowing your own mind's capabilities

 Complexity scales superlinearly in system size
 Heuristics
 Get something insanely simple working and grow it
 Verify the obvious
 Verify in order of dependency

Actel’s SmartFusion Evaluation Kit

 A2F200M3F-FGG484ES
 200,000 System FPGA gates, 256 KB flash memory, 64 KB SRAM, and

additional distributed SRAM in the FPGA fabric and external memory
controller

 Peripherals include Ethernet, DMAs, I2Cs, UARTs, timers, ADCs, DACs and
additional analog resources

 USB connection for programming and debug from Actel's design tools
 USB to UART connection to UART_0 for HyperTerminal examples
 10/100 Ethernet interface with on-chip MAC and external PHY
 Mixed-signal header for daughter card support

“Smart Design” configurator

Eclipse-based “Actel SoftConsole IDE”

Debugger is GDB-based. Includes command line.

An embedded system

Major elements of an Instruction Set Architecture
(registers, memory, word size, endianess, conditions, instructions, addressing modes)

32-bits 32-bits

Endianess

 mov r0, #0x1

 ld r1, [r0,#5]

 r1=mem((r0)+5)

 bne loop

 subs r2, #1

Endianess

Endianness

 Memory Value
 Offset (LSB) (MSB)
 ====== ===========
uint8_t a = 1; 0x0000 01 02 FF 00
uint8_t b = 2;
uint16_t c = 255; // 0x00FF
uint32_t d = 0x12345678; 0x0004 78 56 34 12

 Little-Endian (default)
 LSB is at lower address

 Big-Endian
 MSB is at lower address

 Memory Value
 Offset (LSB) (MSB)
 ====== ===========
uint8_t a = 1; 0x0000 01 02 00 FF
uint8_t b = 2;
uint16_t c = 255; // 0x00FF
uint32_t d = 0x12345678; 0x0004 12 34 56 78

Addressing: Big Endian vs Little Endian (370 slide)

 Endianness: ordering of bytes within a word
 Little - increasing numeric significance with increasing

memory addresses
 Big – the opposite, most significant byte first
 MIPS is big endian, x86 is little endian, ARM supports

both

Instruction encoding

 Instructions are encoded in machine language opcodes

Instructions
movs r0, #10

movs r1, #0

A
RM

v7
 A

RM

Register Value Memory Value
001|00|000|00001010 (LSB) (MSB)
(msb) (lsb) 0a 20 00 21
001|00|001|00000000

Assembly example

data:
 .byte 0x12, 20, 0x20, -1
func:
 mov r0, #0
 mov r4, #0
 movw r1, #:lower16:data
 movt r1, #:upper16:data
top:

 # ldrb r2, [r1],#1
 ldrb r2, [r1]
 add r1, r1, #1
 add r4, r4, r2
 add r0, r0, #1
 cmp r0, #4
 bne top

Instructions used

 mov
 Moves data from register or immediate.
 Or also from shifted register or immediate!

 the mov assembly instruction maps to a bunch of
different encodings!

 If immediate it might be a 16-bit or 32-bit instruction.
 Not all values possible
 why?

 movw
 Actually an alias to mov.

 “w” is “wide”
 hints at 16-bit immediate.

From the ARMv7-M Architecture Reference Manual
(posted on the website under references)

There are similar entries for
move immediate, move shifted
(which actually maps to different
instructions), etc.

Directives

 #:lower16:data
 What does that do?
 Why?

Loads!

 ldrb?
 ldrsb?

Assembly example

data:
 .byte 0x12, 20, 0x20, -1
func:
 mov r0, #0
 mov r4, #0
 movw r1, #:lower16:data
 movt r1, #:upper16:data
top:

 # ldrb r2, [r1],#1
 ldrb r2, [r1]
 add r1, r1, #1
 add r4, r4, r2
 add r0, r0, #1
 cmp r0, #4
 bne top

Done.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77

