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Context and review

• Done with normal material for course.
• Will still cover material to help with projects.
• Lectures will become less frequent.

 All of us will be in lab more frequently.
 Next Tuesday, no lecture.
 Mon-Wed: Travel for research project.

• Material comprehension
 Midterm: 48.5% min, 74.5% median, 92.5% max.

• Project progress
 Tremendous improvement in proposals!
 Really looking forward to seeing them working.
 Lots of fun times in the lab.
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C scalar data types

• Why? Essential basic knowledge for using C.
 Assumed students knew this coming in.

• char: Smallest addressable unit capable of 

storing basic character set.
• short: At least 16 bits. Usually a half-word.
• int: At least 16 bits. Usually a word.
• long: At least 32 bits. 
• long long: At least 64 bits.
• intN_t: Exactly N bits.
• Unsigned types are analagous.
• Why use non intN_t types, like int?

 To say, “I want the fastest thing on this machine 

that has at least 16 bits.”
• If you don't need particular width or consistent 

width across platforms, old-style better.
• Otherwise, new-style better.
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Student talks

• Titles and ordering due 10 March.
 Put in on-line spreadsheet.

• 5 minutes max.
• PDF format.
• Slides due night before talk.
• Will merge on my laptop.
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Definitions

• Why? Power, temperature, energy, performance, and 

reliability important and deeply connected.

• Understand
 why system failing and
 why it consumes power.

• Temperature: Average kineic energy of paricle.

• Heat: Transfer of this energy.
 Heat lows from regions of higher temperature to 

regions of lower temperature.

• Paricles move.

• What happens to a moving paricle in a laice?

• Power: Rate of energy transfer (wats).



Why do wires get hot?

• Scatering of electrons due to destrucive 

interference with waves in the laice.

• What are these waves?

• What happens to the energy of these electrons?

• What happens when wires start very, very cool?

• What is electrical resistance?

• What is thermal resistance?

• Why do metals oten have low thermal resistances?



Why do transistors get hot?

• Scatering of electrons due to destrucive 

interference with waves in the laice.

• Where do these waves come from?

• Where do the electrons come from?
 Intrinsic carriers.
 Dopants.

• What happens as the semiconductor heats up?
 Carrier concentraion increases.
 Carrier mobility decreases.
 Threshold voltage decreases.



Power consumption trends

• Iniial opimizaion at transistor level.

• Further research-driven gains at this level diicult.

• Research moved to higher levels, e.g., RTL.

• Trade area for performance and performance for 

power.

• Clock frequency gains linear.

• Voltage scaling V
DD

2 – very important.
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Power consumption

• P = P
SWITCH

 + P
SHORT

 + P
LEAK

• P
SWITCH

 = C · V
DD

2 · f · A

• P
SHORT

 = b/12 · (V
DD

 − 2 · VT )3 · f · A · t

• P
LEAK

 = V
DD

 · (I
SUB

 + I
GATE

 + I
JUNCTION

 + I
GIDL

)
• C : total switched capacitance

• V
DD

 : high voltage

• f : switching frequency

• A : switching acivity

• b : MOS transistor gain

• V
T
 : threshold voltage

• t : rise/fall ime of inputs

• † PSHORT usually ≤ 10% of PSWITCH

• Smaller as V
DD

 → V
T



DVFS

• Power drops superlinearly in V.

• Performance drops linearly in V.

• Double transistor count.

• Drop V.

• Drop f.

• Net result.
 Reduced power.
 Reduced energy, even though t increases.

• Fails when Vdd → Vth.



Typical control policies

• If uilizaion < ~80%, drop V, f.

• If uilizaion > ~80%, increase V, f.

• Latency: >100ms in some cases.

• Based on lawed assumpion for interacive systems.

• If device has been used within X minutes, keep on.

• Otherwise, put in lower power management state.



Leakage paths



Subthreshold leakage

• I
subthreshold

 = A
S
 W/L v

T

2 (1 – exp(-V
DS

/v
T
))·

                       exp((V
GS

 - V
th

) / n v
T
)

• where A
s
 is a technology-dependent constant,

• V
th

 is the threshold voltage,

• L and W are the device efecive channel length and width,

• V
GS

 is the gate-to-source voltage,

• n is the subthreshold swing coeicient for the transistor,

• V
DS

 is the drain-to-source voltage, and

• v
T
 is the thermal voltage. 



Power, temperature, performance, 

and reliability



Power ime series

• Max Power: Ariicial code generaing max CPU acivity

• Worst-case App Trace: Pracical applicaions worst-case

• Thermal Power: Running average of worst-case app power 

• over a ime period corresponding to thermal ime constant

• Average Power: Long-term average of typical apps (minutes)

• Transient Power: Variability in power consumpion for supply net



Energy

• Power integrated over ime.

• Average power mulipled by ime.

• J or mAh.



State-based power modeling

• For each component.
 For each state.

 Sum ime spent in state × average power for state.

• Time-dependent state transiions are central.

• Big eaters
 Displays.

 Fluorescent tubes.
 OLEDs.

 Wireless interfaces.
 Cellular.
 WiFi.
 Bluetooth.

 CPU.
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Power integrity

• Why? Get it wrong and board resets itself or 

worse for no apparent reason.
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A look at impedance
(with capacitors, inductors and resistors vs. frequency)

Noice the log scales!

EECS 215/Physics 240 “review”



Power integrity related faults

• Even short “power droops” cause failure.

• Stable power = power Integrity.

• Does C ix?

– No: parasiics.



Non-ideal devices

• ESR is Efecive Series Resistance

• ESL is Efecive Series Inductance

• Cef is the efecive capacitance.
– How does quanity efect these values?

• Obviously impendence will be varying by frequency.



Other things can add to ESR/ESL

• Bad solder jobs make ESR/ESL worse.
Bad solder jobs make everything worse.

• Packaging has an impact
– SMT eliminate wire parasiics.

• Pads can have an impact



Given the previous table
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Removing the PCB

1E+03 1E+04 1E+05 1E+06 1E+07 1E+08 1E+09

0.001

0.010

0.100

1.000

Decoupling Impedance vs Frequency

Z(pup)

Z(tant)

Z(1uF)

Z(0.1uF)

Z(0.01uF)

Z(pcb)

ZT

Z(LICA)

Frequency

Im
p

e
d

a
n

c
e



Staged capacitors

• VRM
– Voltage regulator module

• bulk bypass (tantalum) 

and decoupling 

capacitors (ceramic).
– These capacitors supply 

instantaneous current (at 

diferent frequencies) to 

the drivers unil the VRM 

can respond. 

• However sets of diferent 

capacitors cause 

problems!



Power integrity summary

• Use range of C values.

• Model frequency response
Consider parasiics.

• SPICE works.



Other sources of informaion

• htp://alternatezone.com/electronics/iles/PCBDesignTutorialRevA.pdf

– Very nice tutorial/overview

– Seems to have strong viewpoint
• htp://www.goldengategraphics.com/pcgloss.htm

– Some deiniions taken verbaim.

http://alternatezone.com/electronics/files/PCBDesignTutorialRevA.pdf
http://www.goldengategraphics.com/pcgloss.htm
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Solenoids

• Why?
 Release kibble.
 Ring bells.
 Kick ball.
 Open binary valve.

• Electromagnet-based actuator.
• Typically linear.
• Typically binary.
• Typically very fast.
• Poor controllability.
• Heat dissipation is major concern.

 Only when on.
• Major E and EM noise source!
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DC motors

• General purpose: turn things.
• Must switch magnetic field polarity during turn.

 Brushed: carbon common, wears out.
 Brushless: solid-state DC  AC converter first.→

• Back-EMF
 Motors are also generators.

 When turning, opposes applied voltage.
 Speed-dependent: bigger when moving.
 Noise source.
 Permits current regulation.
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Drone/disc motors

• Big advanced recently for UAVs/drones.
 Wide instead of long. Better heat dissipation.
 High-efficiency.
 High-torque.
 Require special drivers.
 Require sensors.
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Stepper motors

• Position at precise orientation.
• Toothed magnets.

 Moves in small increments.
• High torque when stationary.
• Torque drops a lot at high speed.
• Works w.o. sensors / back EMF based control.

 Don't use open-loop anywhere near limits.
• Reliable.
• Lock-in requires continued power.
• Use for precise orientation control.
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Servo motors

• Position at very precise (continuous) orientation.
• Requires sensors for closed-loop control system.
• Zero power once at rest.
• Expensive.
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Linear motors/actuators

• Why: Launching objects.
• Moving objects along long paths.
• Unwind stator  linear array of electromagnets.→

• Could use for linear actuator.
 Leadscrews and rotary more common. 
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H bridges

• Why? Control direction of current through 

device.
• How? BJTs or FETs on “H” legs.
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H bridge diodes

• What can go wrong?
 Switch suddenly.
 Stored energy in coil produces very reverse 

voltage until discharged.
 Of FETs are off (they are), can be destroyed.
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H bridge diodes

• Use diode in || with 

each switch.
• May be free w. 

MOSFETs.
• Where does current 

go when FET off?
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Shaft encoders

• Why? Know relative or absolute orientation.
• Linear arrangement of binary numbers.
• Can reuse numbers.

 Lose absolute position.
• Adjacency essential. 

 Race conditions.
•  
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Shaft encoders

• How to design?
 K-Map cycle.
 000  001  011 → → →

010  110  111 → → →

101  100 → →

• 0  1  0  1 fine, too.→ → →

• How to read?
 LED+photodetector.
 Reflective or transmissive.
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Summary: you don't know motors

• You do know enough to get started.
• Have some understanding of uses.
• Strengths and weaknesses.
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