
EECS 373
Design of Microprocessor-Based Systems

Robert Dick
University of Michigan

Lecture 3: Linking, debugging

13 September 2017
Many slides from Mark Brehob

Review

 ISA
 Encodings
 Addressing modes
 Status register
 Using the ARM ARM

 ABI (including quick rules
 Pass in r0-r3
 Return in r0 (+r1)
 Caller saved r0-r3
 Callee saved r4-r7
 Others? See more detailed ABI information

 Build process
 Gcc, nm, objdump, as, ld
 Make and makefiles
 More on this today

Lab 2

Why did that happen?
● Disable watchdog
● Odd target address for bx, blx

● Long history of such features

Survey outcome

Examples have value
They are covered too fast
Could better show how things fit together

Resolution
● Narrate what I am doing and why more thoroughly
● Slow down

Outline

 Where are we?
 Building and linking
 Debugging

An embedded system

Outline

 Where are we?
 Building and linking
 Debugging

What are the real GNU executable names for the ARM?

 Just add the prefix “arm-none-eabi-” prefix
 Assembler (as)

 arm-none-eabi-as
 Linker (ld)

 arm-none-eabi-ld
 Object copy (objcopy)

 arm-none-eabi-objcopy
 Object dump (objdump)

 arm-none-eabi-objdump
 C Compiler (gcc)

 arm-none-eabi-gcc
 C++ Compiler (g++)

 arm-none-eabi-g++

How does an assembly language program
get turned into a executable program image?

Assembly
files (.S)

Object
files (.o)

as
(assembler)

ld
(linker)

Memory
layout

Memory
layout

Linker
script (.ld)

Executable
image file

Binary program
file (.bin)

Disassembled
code (.lst)

ob
jc
op
y

objdump

What information does the disassembled file provide?

.equ STACK_TOP, 0x20000800

.text

.syntax unified

.thumb

.global _start

.type start, %function

_start:
.word STACK_TOP, start

start:
movs r0, #10
movs r1, #0

loop:
adds r1, r0
subs r0, #1
bne loop

deadloop:
b deadloop
.end

example1.out: file format elf32-littlearm

Disassembly of section .text:

00000000 <_start>:
 0: 20000800 .word 0x20000800
 4: 00000000 .word 0x00000000

00000008 <start>:
 0: 200a movs r0, #10
 2: 2100 movs r1, #0

00000004 <loop>:
 4: 1809 adds r1, r1, r0
 6: 3801 subs r0, #1
 8: d1fc bne.n c <loop>

0000000a <deadloop>:
 a: e7fe b.n 12 <deadloop>

all:
arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o
arm-none-eabi-ld -Ttext 0x0 -o example1.out example1.o
arm-none-eabi-objcopy -Obinary example1.out example1.bin
arm-none-eabi-objdump -S example1.out > example1.lst

.equSTACK_TOP, 0x20000800 /* Equates symbol to value */

.text /* Tells AS to assemble region */

.syntax unified /* Means language is ARM UAL */

.thumb /* Means ARM ISA is Thumb */

.global _start /* .global exposes symbol */
/* _start label is the beginning */
/* ...of the program region */

.type start, %function /* Specifies start is a function */
/* start label is reset handler */

_start:
.word STACK_TOP, start /* Inserts word 0x20000800 */

/* Inserts word (start) */
start:

movs r0, #10 /* We’ve seen the rest ... */
movs r1, #0

loop:
adds r1, r0
subs r0, #1
bne loop

deadloop:
b deadloop
.end

Elements of assembly language program?

How does a mixed C/Assembly program
get turned into a executable program image?

Assembly
files (.s)

Object
files (.o)

as
(assembler)

gcc
(compile
+ link)

Memory
layout

Memory
layout

Linker
script (.ld)

Executable
image file

Binary program
file (.bin)

Disassembled
Code (.lst)

ob
jc
op
y

objdump

ld
(linker)

Library object
files (.o)

C files (.c)

Outline

 Where are we?
 Building and linking
 Debugging

Compile-time debugging

 -Wall: Show more compile-time problems
 -ggdb: Include the most complete debugging information possible.
 -O0: Turn off optimization (only when debugging).

What do debuggers do?

 Souce→PC association
 Breakpoints

 Single stepping
 Skip counts

 Variable inspection
 Monitoring
 Stack analysis
 Memory search
 Setting variables

 Backtracing

What is about to happen?

 Try each of these on real example
 Use same debugger you use in class, but w.o. GUI wrapper
 Show the commonly used debugging functions

Done.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

