
1

EECS 373
Design of Microprocessor-Based Systems

Robert Dick

University of Michigan

Lecture 4: Toolchain, ABI, Memory Mapped I/O

18 September 2017

Many slides from Mark Brehob.

2

In-class examples

Poll results
 Improved
 Maybe still slightly too fast

Actions
 Slow down a little bit more
 Keep narrating
 Keep example complexity/realism trade-off the same

3

Midterm

20 Sep: Practice/review material posted
24 Sep: Practice/review solutions posted
7pm 27 Sep: Midterm exam 1

4

Outline

 Homework 1 review
 Power-on reset
 Pickmin example
 IP register and veneers
 Memory mapped IO

5

HW1: powerful logic design heuristics

 If you are ever stuck on a design problem
involving a combinational network, write the
truth table

 If you are ever stuck on a design problem

involving a sequential network, draw the state
diagram

6

Gates

7

De Morgan's Laws and bubble pushing

(ab)' = a' + b'
(a + b)' = a'b'

Example:
a'b' + b'c + ac
((a'b)' + (b'c)' + (ac)')'

8

Outline

 Homework 1 review
 Power-on reset
 Pickmin example
 IP register and veneers
 Memory mapped IO

Power-on reset

 On the ARM Cortex-M3
 SP and PC are loaded from

the code (.text) segment
 Initial stack pointer

 LOC: 0x00000000
 POR: SP mem(0x00000000)←

 Interrupt vector table
 Initial base: 0x00000004
 Vector table is relocatable
 Entries: 32-bit values
 Each entry is an address
 Entry #1: reset vector

 LOC: 0x0000004
 POR: PC mem(0x00000004)←

 Execution begins

9

.equ STACK_TOP, 0x20000800

.text

.syntax unified

.thumb

.global _start

.type start, %function

_start:
.word STACK_TOP, start

start:
movs r0, #10
...

Register at 0xE000ED08 sets where vector table is.

10

Outline

 Homework 1 review
 Power-on reset
 Pickmin example
 IP register and veneers
 Memory mapped IO

11

IT blocks

 If-then
 Four following instructions can be conditional
 Automatically inserted by assembler
 Must specify condition
 Contained instructions must use that condition
 Longer branches enabled
 Makes status bits available in Thumb mode
 Doesn’t generate code in non-Thumb mode

12

IT blocks

Example

 IT EQ
 MOVEQ r0,r1
 BEQ dloop ; branch at end of IT block is permitted

Incorrect example

 IT NE
 ADD r0,r0,r1 ; syntax error: no condition code used

13

Outline

 Homework 1 review
 Power-on reset
 Pickmin example
 IP register and veneers
 Memory mapped IO

14

IP register and veneers

 How far can one branch?
 With bl, even numbers in -16777216 to

16777214 range
 That’s 24 bits (25 due to even restriction)
 24 < 32
 Need lilypads to hop on, i.e., veneers
 Linker-generated glue to handle far calls
 Allowed (but not required) to use r12

15

Outline

 Homework 1 review
 Power-on reset
 Pickmin example
 IP register and veneers
 Memory mapped IO

Old-style I/O

 Special instructions for reading/writing
peripherals

 Wasteful: Already have read/write instructions

16

Memory-mapped I/O

 Put peripherals at memory addresses
 Turn LED turn on by writing 1 to address 5
 Read button state (active-high) at address 4
 Use a bus on which the peripheral sits

17

Bus access example

 Discuss a basic bus protocol
 Asynchronous (no clock)
 Initiator and Target
 REQ#, ACK#, Data[7:0], ADS[7:0], CMD

 CMD=0 is read, CMD=1 is write.
 REQ# low means initiator is requesting

something.
 ACK# low means target has done its job.

A read transaction

 Initiator wants to read location 0x24
 Initiator sets ADS=0x24, CMD=0
 Initiator then sets REQ# to low

 Delay first
 Target sees read request.
 Target drives data onto data bus.
 Target then sets ACK# to low.
 Initiator grabs the data from the data bus.
 Initiator sets REQ# to high, stops driving ADS and

CMD
 Target stops driving data, sets ACK# to high

terminating the transaction

Read transaction

ADS[7:0]

CMD

Data[7:0]

REQ#

ACK#

?? ??0x24

?? ??0x55

 A B C D E F G HI

Write transaction
(write 0xF4 to location 0x31)

 Initiator sets ADS=0x31, CMD=1, Data=0xF4
 Initiator then sets REQ# to low.
 Target sees write request.
 Target reads data from data bus. (Just has to store

in a register, need not write all the way to
memory!)

 Target then sets ACK# to low.
 Initiator sets REQ# to high & stops driving other

lines.
 Target sets ACK# to high terminating the transaction

The push-button
(if ADS=0x04 write 0 or 1 depending on button)

ADS[7]
ADS[6]
ADS[5]
ADS[4]
ADS[3]
ADS[2]
ADS[1]
ADS[0]
REQ#

Button (0 or 1)

0

Data[7]

Data[0]

..

..

..

..

..

Delay ACK#

What about
CMD?

The LED
(1 bit reg written by LSB of address 0x05)

ADS[5]

ADS[7]
ADS[6]

ADS[4]
ADS[3]
ADS[2]
ADS[1]
ADS[0]
REQ#

Flip-flop
which
controls LEDclock

D

DATA[5]

DATA[7]
DATA[6]

DATA[4]
DATA[3]
DATA[2]
DATA[1]
DATA[0]

Delay ACK#

What does this look like from software perspective?

25

volatile char * button_ads = (char *)(0x24);

char read_button(void) {
return *button_ads;

}

.equ BUTTON_ADS, 0x24

movw r0, #:lower16:BUTTON_ADS
movt r0, #:upper16:BUTTON_ADS
ldr r1, [r0, #0]

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 23
	Slide 24
	Slide 25

