
1

EECS 373
Design of Microprocessor-Based Systems

Robert Dick
University of Michigan

Lecture 6: Memory-mapped I/O review, APB, start interrupts.

24 January 2017

Slides inherited from Mark Brehob.

2

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

3

Lecture flow

 Feedback: Not always clear why we are learning

particular material, and jumping from topic to topic

can make this worse.
 Resolutions:

 Explain reason for each topic at transitions.
 Context and review at start of each lecture.

 Keep on giving feedback.
 Teaching the way I would learn best doesn't work.

 I learn is a weird way.
 I really do act on the feedback.

4

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

5

Context and review

 Just finished memory-mapped IO.
 Write and read memory locations to trigger actions by

peripherals.
 Approaches to design and debugging

 Graph model
 Get a simple version working

 Using stack in parameter passing.
 Project problem selection.

 Were the small group meetings helpful?
 Will require two short project proposals soon.

 Started on APB
 Did a simple example.
 Will do a more complex example today.

6

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

7

Tuesday lab

 Before lecture.
 I have been watching this and covering essential

material previous Thursday.
 However, I will often have reinforcing or more detailed

examples on Tuesday.
 When labs are all done, will compare lab medians for

Tuesday lab and rest of class.
 If there is a significant difference, will adjust Tuesday

lab grades.
 Don't expect a significant difference.

 Lab staff know their stuff.
 Do generally cover the essentials first.

8

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

9

Assembler directives

 Reason for covering: Some people were confused about

this in lab.
 Assembler directions don't necessary generate any

instructions.
 Convenience to allow more modular and organized

code, e.g., .equ .
 Generates no code.
 Acts like a proceprocessor macro (#define) in C.

 Provide information about data to include, e.g.,

.word .
 Tell assembler which symbols are global, e.g., .global .
 Indicate where in memory things (code and data)

should sit, e.g., .text

10

Assembler directives example

@ “#define”-like

.equ STACK_TOP, 0x20000800

.equ SYSREG_SOFT_RST_CR, 0xE0042030

@ Make _start externally visible (to ld).

.global _start

@ “a”: allocatable

@ %progbits: section contains data

@ .int_vector: section name. link.ld uses this.

.section .int_vector, "a", %progbits

_start:

 .word STACK_TOP, main

11

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

12

Hardware vs. software programming

 Reasons covering
 Common sticking point
 A few students have had trouble with this in lab

 HDL FPGA→

 Control which functions (gates) are implemented.
 Control how they are connected.

 Assembly/C ARM Cortex M-3→

 Control instruction sequences.
 Control data to load into memory before execution.

13

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

APB bus signals

• PCLK
− Clock

• PADDR
− Address on bus

• PWRITE
− 1=Write, 0=Read

• PWDATA
− Data written to the

I/O device.

Supplied by the

bus

master/processor.

14

APB bus signals

• PSEL
− Asserted if the current bus

transaction is targeted to

this device

• PENABLE
− High during entire

transaction other than the

first cycle.

• PREADY
• Driven by target. Similar to

our #ACK. Indicates if the

target is ready to do

transaction.
− Each target has it’s own

PREADY
15

So what’s happening here?

Example setup

• For the next couple of slides, we will

assume we have one bus master “CPU”

and two slave devices (D1 and D2)
• D1 is mapped to address

− 0x00001000-0x0000100F
− D2 is mapped to addresses
− 0x00001010-0x0000101F

Say the CPU does a store to location 0x00001004
with no stalls

18

D1

D2

Say the CPU does a store to location 0x00001004
with no stalls

19

D1

D2
Not driven

locally

Design a device which writes to a register whenever
any address in its range is written

20

PWDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

PREADY

32-bit Reg

D[31:0]

 Q[31:0]

EN

 C

We are assuming APB only gets lowest 8 bits of address here…

What if we want to have the LSB of this register
control an LED?

Reg A should be written at address 0x00001000
Reg B should be written at address 0x00001004

21

PWDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

PREADY

32-bit Reg A

D[31:0]

 Q[31:0]

EN

 C

We are assuming APB only gets lowest 8 bits of address here…

32-bit Reg B

D[31:0]

 Q[31:0]

EN

 C

Reads…

22

Each slave device has its own local PRDATA bus.

Let’s say we want a device that provides data from
a switch on a read to any address it is assigned.
(so returns a 0 or 1)

23

PRDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

PREADY

Switch

Device provides data from switch A if address
0x00001000 is read from. B if address 0x00001004
is read from

24

PRDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

PREADY

Switch A

Switch B

All reads read from register, all writes write…

25

PWDATA[31:0]

PWRITE

PENABLE

PSEL

PADDR[7:0]

PCLK

PREADY

32-bit Reg

D[31:0]

 Q[31:0]

EN

 C

We are assuming APB only gets lowest 8 bits of address here…

26

A write transfer with wait states

Setup phase begins

with this rising edge

Setup

Phase

Access

Phase

Wait

State

Wait

State

27

A read transfer with wait states

Setup phase begins

with this rising edge

Setup

Phase

Access

Phase

Wait

State

Wait

State

Errors and stalling

• There is another signal, PSLVERR (APB Slave Error)

which we can drive high if things go bad.
− Nothing will go wrong with our device: ground it.

• Notice we are assuming that our device need not

stall.
− Could stall if we needed.
− If you need more than a few extra cycles,

generally means your design should change.

28

Verilog

29

30

APB state machine

• IDLE
− Default APB state

• SETUP
− When transfer required
− PSELx is asserted
− Only one cycle

• ACCESS
− PENABLE is asserted
− Addr, write, select, and

write data remain stable
− Stay if PREADY = L
− Goto IDLE if PREADY = H

and no more data
− Goto SETUP is PREADY = H

and more data pending

31

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

32

Caller/callee saved registers review

Reason for covering: Some people didn't understand this

and it is important for the project.

Some code

function_call()
 This can walk all over r0-r3.
 If this ends up needing a veneer, the linker might insert

code clobbering r12.
 Preserve r0-r3 and r12 if we'll read before write after

the call.

More code

33

Caller/callee saved registers review

Reason for covering: Some people didn't understand this

and it is important for the project.

Was just called
 I'm allowed to clobber r0-r3.
 Safe to clobber r12, too, because linker may have

already clobbered it.
 Not worrying about special registers >r12.
 Need to save/restore everything else if it will be

written: r5-r11

34

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

35

Volatile keyword

Reason for covering: You need this to safely write C code

that plays with IO devices.

Definition: this value may be changed by something

outside this program.

Examples
 #define LED_ADDR ((volatile const unsigned *)(8))
 volatile const unsigned *led_addr = 0x8;

Otherwise, compiler might optimize away actual memory

accesses.

What's volatile? The pointer or the value pointed to?

http://cdecl.org is great!

http://cdecl.org/

36

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

37

Pointers and function pointers

 Reason for covering: Function pointers let you esentially

pass code around dynamically among functions and build

vector tables in C.
 Pointers

 Type-safe addresses.
 Avoid void * unless really needed.
 When would you use this?
 The type of the object cannot be known at compile time.

38

Void *, a short illustrative script

Compiler: Excuse me, sir. May I suggest using a round peg?

Programmer: Shut up! I don't care! Just do it!

Compiler: As you wish, sir.

OS: Where would you like your 10GB core dump file delivered?

39

Function pointers

// Can use for generic functions.

int apple_checker(const void *x);

int orange_checker(const void *x);

int check_stuff(void *stuff_array,

int (*checker)(const void *);

// Can use for jump tables.

void (*func_ptr[3]) = {func1, func2, func3};

40

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

41

Weak references

 Reason for covering: A trick to conditionally call

functions that may be useful in Lab 4 and your

projects.

What does a weak symbol imply?
 Provides a default entry in a function vector.
 Why useful? Allows override at link time.

What does a call through a weak symbol imply?
 If the symbol exists, call the function.
 If not, do nothing.
 Why useful? Allows link-time conditional calls without

recompilation.
 Especially useful for large projects using libraries and

multiple build versions.

42

Outline

 Lecture flow
 Context and review
 Tuesday lab
 Assembler directives
 Hardware vs. software programming
 APB
 Caller/callee saved registers review
 Volatile keyword
 Pointers and function pointers
 Weak references
 Interrupts

Interrupts

Merriam-Webster:
− “to break the uniformity or continuity of”

• Informs a program of some external events
• Breaks execution flow

Key questions:
• Where do interrupts come from?
• How do we save state for later continuation?
• How can we ignore interrupts?
• How can we prioritize interrupts?
• How can we share interrupts?

43

I/O Data Transfer

Two key questions to determine how data is transferred

to/from a non-trivial I/O device:

1. How does the CPU know when data is available?

a. Polling

b. Interrupts

2. How is data transferred into and out of the

device?

a. Programmed I/O

b. Direct Memory Access (DMA)

Interrupts

Interrupt (a.k.a. exception or trap):
• Makes CPU stop executing the current program and begin

executing a an interrupt handler or interrupt service
routine (ISR). ISR does something and allows program to

resume.

Similar to procedure calls, but
• can occur between any two instructions
• are transparent to the running program (usually)
• are not generally explicitly called by program
• call a procedure at an address determined by the

type of interrupt, not the program

Two types of interrupts

• Those caused by an instruction
− Examples:

• TLB miss
• Illegal/unimplemented instruction
• div by 0

− Names:
• Trap, exception

Two basic types of interrupts

• Those caused by the external world
− External device
− Reset button
− Timer expires
− Power failure
− System error

• Names:
− interrupt, external interrupt

How it works

• Something tells the processor core there is an

interrupt
• Core transfers control to code that needs to be

executed
• Said code “returns” to old program
• Much harder then it looks.

− Why?

Details

• How do you figure out where to branch to?

• How to you ensure that you can get back to
where you started?

• Don’t we have a pipeline? What about partially
executed instructions?

• What if we get an interrupt while we are
processing our interrupt?

• What if we are in a “critical section?”

Where

• If you know what caused the interrupt

then you want to jump to the code that

handles that interrupt.
− If you number the possible interrupt cases,

and an interrupt comes in, you can just

branch to a location, using that number as an

offset (this is a branch table)
− If you don’t have the number, you need to poll

all possible sources of the interrupt to see

who caused it.
• Then you branch to the right code
• Ugly.

Get back to where you once belonged

• Need to store the return address somewhere.
− Stack might be a scary place.

• That would involve a load/store and might

cause an interrupt (page fault)!
− So a dedicated register seems like a good choice

• But that might cause problems later…

Snazzy architectures

• A modern processor has many instructions
in-flight at once.
− What do we do with them?

• Drain the pipeline?
− What if one of them causes an exception?

• Squash them all and restart later
− Slows

• What if the instruction that caused the
exception was executed before some
other instruction?
− What if that other instruction caused an

interrupt?

Nested interrupts

• If we get one interrupt while handling

another what to do?
− Just handle it

• But what about that dedicated register?
• What if I’m doing something that can’t be

stopped?
− Ignore it

• But what if it is important?
− Prioritize

• Take those interrupts you care about.
• Ignore the rest.
• Still have dedicated register problems.

Critical section

• We probably need to ignore some interrupts but

take others.
− Probably should be sure our code can’t cause an

exception.
− Use same prioritization as before.

Our processor

• Over 100 interrupt sources
− Power on reset, bus errors, I/O pins changing state,

data in on a serial bus etc.

• Need a great deal of control
− Ability to enable and disable interrupt sources
− Ability to control where to branch to for each interrupt
− Ability to set interrupt priorities

• Who wins in case of a tie
• Can interrupt A interrupt the ISR for interrupt B?

− If so, A can “preempt” B.

• All that control will involve memory mapped I/O.
− And given the number of interrupts that’s going to be a

pain.

55

56

Enabling and disabling interrupt sources

How to know where to go on an interrupt.

57

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

