
1

EECS 373
Design of Microprocessor-Based Systems

Robert Dick

University of Michigan

Lecture 9: Serial buses, ADCs, and DACs

2 February 2017

Slides inherited from Mark Brehob.

Outline

• Context and review
• Serial buses

 UART
 SPI
 I2C

• ADCs and DACs
 Fundamentals
 Operation

2

Context and review

 Timers
 Oscillator, counter, ISR, (OS routines,) library, application.
 PWM a useful application.
 Virtualization: use SW to increase apparent number of HW

timers.
 Hazards

 Fundamental definitions.
 Problems they cause.
 Side-stepping them.

 Synchronous systems.
 Pre-syncing signals using flip-flops.

 Directly addressing them.
 Logic design techniques.

 Setup and hold times

3

Terse project proposals

 Two, each 0.5-1 page in length.
 Due tomorrow.
 See sticky Piazza post for example and uploading

instructions.

4

Team formation meeting

 7:30pm-9pm on 7 Feb.
 1311 EECS.
 Come prepared to very briefly pitch your project idea if

you want to recruit team members.
 Everybody should leave with a team and a topic.

5

Student talks

 Each student will do 5-minute talk in March.
 Can team up with others by scheduling talks contiguously.
 See Piazza post for initial (random) schedule.
 Can change schedule, but follow rules.
 More on this later in course.

6

Outline

• Context and review
• Serial buses

 UART
 SPI
 I2C

• ADCs and DACs
 Fundamentals
 Operation

7

Serial interfaces

8

Timers

CPU

Software

Hardware

Internal

External

In
pu

t

System Buses
AHB/APB

ldr (read)

str (write)
ISA

EECS 370

USART DAC/ADC

Internal &

External

Memory

GPIO/INT

O
ut

pu
t

In
te

rr
up

t

Co
m
pa

re

Ca
pt

ur
e

I2
C

SP
I

UA
RT AD

C
DA

C

C

Assembly

Machine Code

Interrupts

interrupts

EM
C

SVC#

fault

traps &

exceptions

INT#

External memory attaches to the processor
via the external memory controller and bus

9

Atmel SAM3U

Bus organization

• Multidrop bus (MDB): all components are

connected to the same set of wires.
• In the general case, a bus may have more than

one device capable of driving it.
• That is, it may be a “multi-master” bus as

discussed earlier.

Review: Multiple (potential) bus drivers (1)

Tri-state devices, just have

one device drive at a time.
• Everyone can read though

− Pros:
• Fairly fast, pin-efficient.

− Cons:
• Tri-state devices can be slow.

− Especially drive-to-tristate?

• Need to be sure two folks not driving at the same time
− Let out the magic smoke.

− Most common solution (at least historically)
• Ethernet, PCI, etc.

Review: Multiple (potential) bus drivers (2)

• MUX
− Many pins.
− Consider a 32-bit bus with 6 potential drivers.
− Generally impractical on PCB.
− More practical on-chip.

Review: Multiple (potential) bus drivers (3)

• “pull-up” aka “open

collector” aka “wired OR”
− Wire is pulled high by a

resistor.
− If any device pulls the

wire low, it goes low.

• Pros:
− If two devices both drive

the bus, it still works!

• Cons:
− Rise-time is long.
− Constant power

consumption.

• Used in I2C, CAN

UART

• Universal Asynchronous Receiver/Transmitter
• Translates data between parallel and serial forms.
• UARTs used in conjunction with communication

standards such as EIA, RS-232, RS-422 or RS-485.
• Universal

− Data format and transmission speeds are

configurable
− Electric signaling levels and methods (such as

differential signaling etc.) handled by an external

driver.

14

Protocol

• Each character is sent as
− a logic low start bit
− a configurable number of data bits (usually 7 or 8,

sometimes 5)
− an optional parity bit
− one or more logic high stop bits.
− with a particular bit timing (“baud” or “baudrate”)

• Examples
− “9600-N-8-1” <baudrate><parity><databits><stopbits>
− “9600-8-N-1” <baudrate><databits><parity><stopbits>

15

Variations

• UART is actually a generic term that includes a

large number of different devices/standards.
• RS-232 is a standard.
• Specifies characteristics and timing of signals,

the meaning of signals, and the physical size and

pin out of connectors.

16

Signals (only most common)

• The RXD signal of a UART is the signal receiving the data. This will be an

input and is usually connected to the TXD line of the downstream device.

• The TXD signal of a UART is the signal transmitting the data. This will be

an output and is usually connected to the RXD line of the downstream

device.

• The RTS# (Ready to Send) signal of a UART is used to indicate to the

downstream device that the device is ready to receive data. This will be

an output and is usually connected to the CTS# line of the downstream

device.

• The CTS# (Clear to Send) signal of a UART is used by the downstream

device to identify that it is OK to transmit data to the upsteam device.

This will be an input and is usually connected to the RTS# line of the

upstream device.

17

18

DB9 stuff

• DTE vs. DCE
• Pinout of a DCE?
• Common ground?
• Noise effects?

Wiring a DTE (terminal) device to a DCE (modem) device for communication is easy.

The pins are a one-to-one connection, meaning all wires go from pin x to pin x.

A straight through cable is commonly used for this application.

In contrast, wiring two DTE devices together requires crossing the transmit and receive wires.

This cable is known as a null modem or crossover cable. Also easy to wire.

19

RS-232 transmission example

Outline

• Context and review
• Serial buses

 UART
 SPI
 I2C

• ADCs and DACs
 Fundamentals
 Operation

20

Introduction

 What is it?
 Basic Serial Peripheral Interface (SPI)
 Capabilities
 Protocol
 Pro / Cons and Competitor
 Uses
 Conclusion

Serial Peripheral Interface
http://upload.wikimedia.org/wikipedia/commons/thumb/e/ed/

SPI_single_slave.svg/350px-SPI_single_slave.svg.png

What is SPI?

 Serial bus protocol.
 Fast, easy to use, simple.
 Widely supported.

SPI basics

 A communication protocol using 4 wires
 Also known as a 4 wire bus

 Used to communicate across small

distances
 Multiple slaves, single master
 Synchronized

Capabilities of SPI

 Always Full Duplex
 Communicating in two directions at the

same time
 Transmission need not be meaningful

 Multiple Mb/s transmission speed
 Transfers data in 4 to 16 bit characters
 Multiple slaves

 Daisy-chaining possible

Protocol

 Wires:
 Master Out Slave In (MOSI)
 Master In Slave Out (MISO)
 System Clock (SCLK)
 Slave Select 1…N

 Master Set Slave Select low
 Master Generates Clock
 Shift registers shift in and out data

Wires in detail

 MOSI – Carries data out of Master to Slave
 MISO – Carries data from Slave to Master

 Both signals used for every transmission
 SS_BAR – Unique line to select a slave
 SCLK – Master produced clock to

synchronize data transfer

Shifting protocol

Master shifts out data to Slave, and shift in data from Slave
http://upload.wikimedia.org/wikipedia/commons/thumb/b/bb/SPI_8-bit_circular_transfer.svg/400px-SPI_8-bit_circular_transfer.svg.png

Diagram

Master and multiple independent

slaves
http://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/SPI_three_sla

ves.svg/350px-SPI_three_slaves.svg.png

Master and multiple daisy-

chained slaves
http://www.maxim-ic.com/appnotes.cfm/an_pk/3947

Some wires have been renamed

Clock phase (advanced)
 Two phases and two polarities of clock.
 Four modes.
 Master and selected slave must be in same

mode.
 Master must change polarity and phase to

communicate with slaves of different numbers.
 Data transmission and latching happen on

alternating clock edges.
 Why? Increases implementation flexibility for bus

users.

Timing Diagram

Timing Diagram – Showing Clock polarities and phases
http://www.maxim-ic.com.cn/images/appnotes/3078/3078Fig02.gif

Pros and cons

Pros:
 Fast and easy

 Fast for point-to-point connections
 Easily allows streaming/Constant data inflow
 No addressing/Simple to implement

 Full duplex
 Widely supported

Cons:
 SS signal makes multiple slaves complicated
 No ack capability
 No inherent arbitration
 No flow control
 Four wires

Uses

 Some serial encoders/decoders,

converters, serial LCDs, sensors, etc.
 Pre-SPI serial devices

Summary

 SPI – 4 wire serial bus protocol
 MOSI MISO SS SCLK wires

 Full duplex
 Multiple slaves, one master
 Best for point-to-point streaming data
 Easily supported

Outline

• Context and review
• Serial buses

 UART
 SPI
 I2C

• ADCs and DACs
 Fundamentals
 Operation

34

I2C summary

• Inter integrated circuit bus.
• Two-wire protocol.
• From Philips in early 1980s.

35

I2C applications

• Initially in TV sets.
• Common for peripherals from many companies.
• Real-time clocks and temperature sensors on

general-purpose computer motherboards.

36

I2C technical description

• Two-wire serial protocol.
• Addressing.
• Up to 3.4 Mb/s.
• Multi-master, multi-slave.

37

I2C wiring

• SDA: data.
• SCL: clock.
• Open collector.
• Simple interfacing among voltage domains.

38

I2C clocking

• Unconventional.
• Quiescent state is high.
• Master pulses low during transmission.
• Slave holds clock low to extend transmission cycle.

 One advantage of open collector design.

39

I2C transaction

• Master initiates.
• Start.
• Address.
• Data.
• Ack.
• Stop.

40

I2C roles

• Transmitter/receiver not same as master/slave.
• Master initiates transactions.
• Transmitter sends data on SDA.
• Receiver acks.
• Read: slave is transmitter.
• Write: master is transmitter.

41

I2C starting

• Master drives SDA low while SCL remains high.
• During other parts of transactions, SDA changes when

SCL is low.

42

I2C address

• Sampled on rising SCL.
• 7-bit address.
• 8th bit

 Low: write.
 High: read.

• Philips/NXP can assign standard addresses for a fee.

43

I2C data

• Sampled on rising SCL.
• 8-bit.
• Write: master transmits, slave acks.
• Read: slave transmits, master acks.
• Continues until master signals to stop.

44

I2C stopping

• Master allows SDA to go high while SCL high.
• Stops or aborts transactions.

45

I2C timing diagram

46

Outline

• Context and review
• Serial buses

 UART
 SPI
 I2C

• ADCs and DACs
 Fundamentals
 Operation

47

48

Many signals effectively analog

• At the macroscopic level, many signals have so many

possible values they are effectively continuous/analog.
− Sound, light, temperature, pressure, voltage, etc.

• Path to digital system
− Source continuous voltage discrete value.→ →

• Transducers: converts one type of energy to another
− Electro-mechanical, Photonic, Electrical, …

• Examples
− Microphone/speaker
− Thermocouples
− Accelerometers

49

Transducers convert one form of energy into
another

50

Convert light to voltage with a CdS photocell

 Vsignal = (+5V) RR/(R + RR)

 Choose R=RR at median of range.
 Cadmium Sulfide (CdS).
 Cheap, low current.
 TRC = (R+RR)*Cl.

 Typically R~50-200kW.
 C~20pF.
 So, TRC~20-80uS.

 fRC ~ 10-50kHz.

Source: Forrest Brewer

Many other common sensors (some digital)

• Force
− Strain gauges - foil, conductive ink
− Conductive rubber
− Rheostatic fluids

• Piezorestive (needs bridge)
− Piezoelectric films
− Capacitive force

• Sound
− Microphones: current or charge
− Sonar: usually piezoelectric

• Position
− Switches
− Shaft encoders
− Gyros

• Atmospheric pressure

Many other common sensors (some digital)

• Acceleration
− MEMS
− Pendulum

• Monitoring
− Battery energy
− Motor velocity
− Temperature

• Field
− Antenna
− Magnetic

• Hall effect
• Flux gate

• Location
− Permittivity
− Dielectric

• Conductivity
• Many, many more

53

Analog to digital

• Goal

• Process

SoftwareSensor ADC

Physical

Phenomena

Voltage or

Current

ADC Counts Engineering

Units

Physical

Phenomena

Engineering

Units

54

Digital representation of analog signal

• Discretize in time and value.
• Time series of discrete values

V Counts

)(xf sampled

)(xf

t

ST

55

Choosing the value range

• What do the sample values represent?
− Some fraction within the range of values

Range Too Small Range Too Big

Ideal Range

rV

t

rV

t

rV

rV

t

rV

rV

56

Choosing the value resolution

• Resolution
− Number of discrete values that

represent a range of analog values.
− MSP430: 12-bit ADC

• 4096 values
• Range / 4096 = Step

• Quantization Error
− How far off discrete value is from

actual
− ½ LSB Range / 8192→

Larger range → lower resolution

57

Choosing the temporal resolution

• Too low: we can’t reconstruct the signal.
• Too high: waste computation, energy, resources.

)(xf sampled

)(xf

t

58

Shannon-Nyquist sampling theorem

• If a continuous-time signal contains no frequencies

higher than , it can be completely determined by

discrete samples taken at a rate:

• Example:
− Humans can process audio signals 20 Hz – 20 KHz
− Audio CDs: sampled at 44.1 Khz

• Caveat: additional samples can have value if signal

contains high-frequency noise.
− Allows low-pass filter to improve accuracy at cost of

decreased effective samping rate.

)(xf

maxf

maxsamples 2 ff

59

Converting between voltages,
ADC counts, and engineering units

• Converting: ADC counts Voltage→

• Converting: Voltage Engineering Units→

ADCN

N
ADC

= 4095×
V
in

−V
r−

V
r+

−V
r−

V
in

= N
ADC

×
V
r+

−V
r−

4095t

rV

rV

inV

00355.0

986.0
TEMP

986.0)TEMP(00355.0

TEMP
C

CTEMP

V

V

60

A note about sampling and arithmetic

• Common error converting values

float vtemp = adccount/4095 * 1.5;

float tempc = (vtemp-0.986)/0.00355;

Learn associativity and type conversion rules of ANSI C.

• Fixed point operations
− Overflow and underflow dangers complicate design.
− This is deep. Talk to me if you want to try it.

• Floating point operations
− Often software emulated.
− Often slow, power-hungry on embedded processors.

00355.0

986.0
TEMP TEMP

C

V

VTEMP = N
ADC

×
V
r+

−V
r−

4095

61

Use anti-aliasing filters on ADC inputs to
ensure that Shannon-Nyquist is satisfied

• Aliasing
− Different frequencies are indistinguishable when they

are sampled.

• Condition the input signal using a low-pass filter
− Removes high-frequency components
− (a.k.a. anti-aliasing filter)

Do I really need to condition my input signal?

• Often.

• Many ADCs have analog filter built in.
• Those filters typically have a cut-off frequency

just above ½ their maximum sampling rate.
• Which is great if you are using the maximum

sampling rate, less useful if you are sampling at

a slower rate.

62

63

Designing the anti-aliasing filter

• w is in radians, w = 2πf
• R = 1/(C2πf)

• Goal: cutoff f = 30 Hz. Given: C = 0.1 μF.
• Question: R = ?

Oversampling

• Can intentionally introduce or leave high-

frequency noise and oversample.
• Reduces quantization error.

64

Oversampling a 1-bit ADC w/ noise & dithering (cont)

65

1

0

CountVoltage

500 mV

0 mV

375 mV

N
1
 = 11

N
0
 = 32

uniformly

distributed
random noise

±250 mV

“upper edge”

of the box

Vthresh = 500 mV
V

ra
n

d
 =

5
0

0
 m

V

Note:

 N
1
 is the # of ADC counts that = 1 over the sampling window

 N
0
 is the # of ADC counts that = 0 over the sampling window

t

Lots of other issues

• Might need anti-imaging filter.
 Especially during analog signal reconstruction.
 Remove high-f components from stair stepping.

• Cost and power play a role.

• Might be able to avoid ADCs/DACs.
− E.g., PWM.

66

Outline

• Context and review
• Serial buses

 UART
 SPI
 I2C

• ADCs and DACs
 Fundamentals
 Operation

67

DAC #1: voltage divider

2-to-4 decoder

2

Din

Vout

• Fast
• Size: really big: O(2n)
• Accuracy?
• Monotonicity?

Vref

R

R

R

R

DAC #2: R/2R ladder

D3 (MSB) D2 D1 D0 (LSB)

2R 2R 2R 2R

R R R 2R

Iout

Vref

• Size: small O(n)
• Accuracy?
• Monotonicity? (Consider 0111 -> 1000)

ADC #1: flash

Vref

R

R

R

R

Vin

+

_

priority

encoder

3

2

1

0Vcc

2

Dout

+

_

+

_

Huge. O(2n).

ADC #2: single-slope integration

+

_Vin

n-bit counter

CLK

EN*

Vcc

• Start: Reset counter, discharge C.
• Charge C at fixed current I until Vc > Vin . How should C,

I, n, and CLK be related?
• Final counter value is Dout.
• Slow: conversion may take several milliseconds.

 O(2n)
• Good differential linearity (dI/dO)
• Absolute linearity depends on precision of C, I, and clock.

C
I

ADC #3: successive approximation

72

1 Sample → Multiple cycles

• Uses DAC for guessing.
• Faster: O(n)
• Goes from MSB to LSB.
• Not good for high-speed ADCs.

Errors and ADCs

• Figures and some text from:
− Understanding analog to digital converter

specifications. By Len Staller
− http://www.embedded.com/showArticle.jhtml?ar

ticleID=60403334

• Key concept here is that the specification provides

worst case values.

http://www.embedded.com/showArticle.jhtml?articleID=60403334
http://www.embedded.com/showArticle.jhtml?articleID=60403334

The integral nonlinearity (INL) is the deviation of an ADC's transfer function from a straight line.

This line is often a best-fit line among the points in the plot but can also be a line that connects

the highest and lowest data points, or endpoints. INL is determined by measuring the voltage

at which all code transitions occur and comparing them to the ideal. The difference between

the ideal voltage levels at which code transitions occur and the actual voltage is the INL error,

expressed in LSBs. INL error at any given point in an ADC's transfer function is the accumulation

of all DNL errors of all previous (or lower) ADC codes, hence it's called integral nonlinearity.

Integral nonlinearity

DNL is the worst cases variation of actual step size vs. ideal step size.

It’s a promise it won’t be worse than X.

Differential nonlinearity

Full-scale error is also sometimes called “gain error”

Full-scale error is the difference between the ideal code transition to the highest

output code and the actual transition to the output code when the offset error is zero.

Errors

• Errors in a specification are bad.
− So if you have an INL of ±0.25 LSB, you “know” that the

device will never have more than 0.25 LSB error from

its ideal value.
− That of course assumes you are operating within the

specification.
• Temperature, input voltage, input current

available, etc.

• Integral nonlinearity and differential nonlinearity

 are important.
− Should know what full-scale error is.
− Can compensate in software.

• Where is best place to compensate?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80

