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Context and review

 Timers
 Oscillator, counter, ISR, (OS routines,) library, application.
 PWM a useful application.
 Virtualization: use SW to increase apparent number of HW 

timers.
 Hazards

 Fundamental definitions.
 Problems they cause.
 Side-stepping them.

 Synchronous systems.
 Pre-syncing signals using flip-flops.

 Directly addressing them.
 Logic design techniques.

 Setup and hold times
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Terse project proposals

 Two, each 0.5-1 page in length.
 Due tomorrow.
 See sticky Piazza post for example and uploading 

instructions.
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Team formation meeting

 7:30pm-9pm on 7 Feb.
 1311 EECS.
 Come prepared to very briefly pitch your project idea if 

you want to recruit team members.
 Everybody should leave with a team and a topic.
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Student talks

 Each student will do 5-minute talk in March.
 Can team up with others by scheduling talks contiguously.
 See Piazza post for initial (random) schedule.
 Can change schedule, but follow rules.
 More on this later in course.
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Serial interfaces
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External memory attaches to the processor 
via the external memory controller and bus
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Bus organization

• Multidrop bus (MDB): all components are 

connected to the same set of wires.
• In the general case, a bus may have more than 

one device capable of driving it.
• That is, it may be a “multi-master” bus as 

discussed earlier.



Review: Multiple (potential) bus drivers (1)

Tri-state devices, just have

one device drive at a time. 
• Everyone can read though

− Pros:
• Fairly fast, pin-efficient. 

− Cons:
• Tri-state devices can be slow.

− Especially drive-to-tristate?

• Need to be sure two folks not driving at the same time
− Let out the magic smoke.

− Most common solution (at least historically)
• Ethernet, PCI, etc.



Review: Multiple (potential) bus drivers (2)

• MUX
− Many pins.
− Consider a 32-bit bus with 6 potential drivers. 
− Generally impractical on PCB.
− More practical on-chip.



Review: Multiple (potential) bus drivers (3)

• “pull-up” aka “open 

collector” aka “wired OR”
− Wire is pulled high by a 

resistor.
− If any device pulls the 

wire low, it goes low.

• Pros:
− If two devices both drive 

the bus, it still works!

• Cons:
− Rise-time is long.  
− Constant power 

consumption.

• Used in I2C, CAN



UART

• Universal Asynchronous Receiver/Transmitter
• Translates data between parallel and serial forms. 
• UARTs used in conjunction with communication 

standards such as EIA, RS-232, RS-422 or RS-485. 
• Universal

− Data format and transmission speeds are 

configurable
− Electric signaling levels and methods (such as 

differential signaling etc.) handled by an external 

driver.
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Protocol

• Each character is sent as 
− a logic low start bit
− a configurable number of data bits (usually 7 or 8, 

sometimes 5)
− an optional parity bit
− one or more logic high stop bits.
− with a particular bit timing (“baud” or “baudrate”)

• Examples
− “9600-N-8-1”  <baudrate><parity><databits><stopbits>
− “9600-8-N-1”  <baudrate><databits><parity><stopbits>
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Variations

• UART is actually a generic term that includes a 

large number of different devices/standards.
• RS-232 is a standard.
• Specifies characteristics and timing of signals, 

the meaning of signals, and the physical size and 

pin out of connectors.
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Signals (only most common)

• The RXD signal of a UART is the signal receiving the data. This will be an 

input and is usually connected to the TXD line of the downstream device.

• The TXD signal of a UART is the signal transmitting the data. This will be 

an output and is usually connected to the RXD line of the downstream 

device.

 
• The RTS# (Ready to Send) signal of a UART is used to indicate to the 

downstream device that the device is ready to receive data. This will be 

an output and is usually connected to the CTS# line of the downstream 

device. 

 
• The CTS# (Clear to Send) signal of a UART is used by the downstream 

device to identify that it is OK to transmit data to the upsteam device. 

This will be an input and is usually connected to the RTS# line of the 

upstream device.
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DB9 stuff

• DTE vs. DCE
• Pinout of a DCE?
• Common ground?
• Noise effects?

Wiring a DTE (terminal) device to a DCE (modem) device for communication is easy.  

The pins are a one-to-one connection, meaning all wires go from pin x to pin x.  

A straight through cable is commonly used for this application.  

In contrast, wiring two DTE devices together requires crossing the transmit and receive wires.  

This cable is known as a null modem or crossover cable. Also easy to wire.
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RS-232 transmission example
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Introduction

 What is it?
 Basic Serial Peripheral Interface (SPI)
 Capabilities
 Protocol
 Pro / Cons and Competitor
 Uses
 Conclusion

Serial Peripheral Interface
http://upload.wikimedia.org/wikipedia/commons/thumb/e/ed/

SPI_single_slave.svg/350px-SPI_single_slave.svg.png



What is SPI?

 Serial bus protocol.
 Fast, easy to use, simple.
 Widely supported.



SPI basics

 A communication protocol using 4 wires
 Also known as a 4 wire bus

 Used to communicate across small 

distances 
 Multiple slaves, single master
 Synchronized



Capabilities of SPI

 Always Full Duplex 
 Communicating in two directions at the 

same time
 Transmission need not be meaningful

 Multiple Mb/s transmission speed
 Transfers data in 4 to 16 bit characters
 Multiple slaves

 Daisy-chaining possible



Protocol

 Wires:
 Master Out Slave In (MOSI)
 Master In Slave Out (MISO)
 System Clock (SCLK)
 Slave Select 1…N

 Master Set Slave Select low
 Master Generates Clock
 Shift registers shift in and out data



Wires in detail

 MOSI – Carries data out of Master to Slave
 MISO – Carries data from Slave to Master

 Both signals used for every transmission
 SS_BAR – Unique line to select a slave
 SCLK – Master produced clock to 

synchronize data transfer



Shifting protocol

Master shifts out data to Slave, and shift in data from Slave
http://upload.wikimedia.org/wikipedia/commons/thumb/b/bb/SPI_8-bit_circular_transfer.svg/400px-SPI_8-bit_circular_transfer.svg.png



Diagram

Master and multiple independent 

slaves
http://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/SPI_three_sla

ves.svg/350px-SPI_three_slaves.svg.png

Master and multiple daisy-

chained slaves
http://www.maxim-ic.com/appnotes.cfm/an_pk/3947

Some wires have been renamed 



Clock phase (advanced)
 Two phases and two polarities of clock.
 Four modes.
 Master and selected slave must be in same 

mode.
 Master must change polarity and phase to 

communicate with slaves of different numbers.
 Data transmission and latching happen on 

alternating clock edges.
 Why? Increases implementation flexibility for bus 

users.



Timing Diagram

Timing Diagram – Showing Clock polarities and phases
http://www.maxim-ic.com.cn/images/appnotes/3078/3078Fig02.gif



Pros and cons

Pros:
 Fast and easy

  Fast for point-to-point connections
  Easily allows streaming/Constant data inflow
  No addressing/Simple to implement

 Full duplex
 Widely supported

Cons:
 SS signal makes multiple slaves complicated
 No ack capability
 No inherent arbitration 
 No flow control
 Four wires



Uses

 Some serial encoders/decoders, 

converters, serial LCDs, sensors, etc.
 Pre-SPI serial devices



Summary

 SPI – 4 wire serial bus protocol
 MOSI MISO SS SCLK wires

 Full duplex
 Multiple slaves, one master
 Best for point-to-point streaming data
 Easily supported
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I2C summary

• Inter integrated circuit bus.
• Two-wire protocol.
• From Philips in early 1980s.
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I2C applications

• Initially in TV sets.
• Common for peripherals from many companies.
• Real-time clocks and temperature sensors on 

general-purpose computer motherboards.
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I2C technical description

• Two-wire serial protocol.
• Addressing.
• Up to 3.4 Mb/s.
• Multi-master, multi-slave.
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I2C wiring

• SDA: data.
• SCL: clock.
• Open collector.
• Simple interfacing among voltage domains.
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I2C clocking

• Unconventional.
• Quiescent state is high.
• Master pulses low during transmission.
• Slave holds clock low to extend transmission cycle.

 One advantage of open collector design.
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I2C transaction

• Master initiates.
• Start.
• Address.
• Data.
• Ack.
• Stop.
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I2C roles

• Transmitter/receiver not same as master/slave.
• Master initiates transactions.
• Transmitter sends data on SDA.
• Receiver acks.
• Read: slave is transmitter.
• Write: master is transmitter.
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I2C starting

• Master drives SDA low while SCL remains high.
• During other parts of transactions, SDA changes when 

SCL is low.
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I2C address

• Sampled on rising SCL.
• 7-bit address.
• 8th bit

 Low: write.
 High: read.

• Philips/NXP can assign standard addresses for a fee.
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I2C data

• Sampled on rising SCL.
• 8-bit.
• Write: master transmits, slave acks.
• Read: slave transmits, master acks.
• Continues until master signals to stop.
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I2C stopping

• Master allows SDA to go high while SCL high.
• Stops or aborts transactions. 
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I2C timing diagram
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Many signals effectively analog

• At the macroscopic level, many signals have so many 

possible values they are effectively continuous/analog.
− Sound, light, temperature, pressure, voltage, etc.

• Path to digital system
− Source  continuous voltage  discrete value.→ →

• Transducers: converts one type of energy to another
− Electro-mechanical, Photonic, Electrical, …

• Examples
− Microphone/speaker
− Thermocouples
− Accelerometers
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Transducers convert one form of energy into 
another
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Convert light to voltage with a CdS photocell

 Vsignal = (+5V) RR/(R + RR)

 Choose R=RR at median of range.
 Cadmium Sulfide (CdS).
 Cheap, low current.
 TRC = (R+RR)*Cl.

 Typically R~50-200kW.
 C~20pF.
 So, TRC~20-80uS.

 fRC ~ 10-50kHz.

Source: Forrest Brewer



Many other common sensors (some digital)

• Force
− Strain gauges - foil, conductive ink
− Conductive rubber
− Rheostatic fluids

• Piezorestive (needs bridge)
− Piezoelectric films
− Capacitive force

• Sound
− Microphones: current or charge
− Sonar: usually piezoelectric

• Position
− Switches
− Shaft encoders
− Gyros

• Atmospheric pressure



Many other common sensors (some digital)

• Acceleration
− MEMS
− Pendulum

• Monitoring
−   Battery energy
−   Motor velocity
−   Temperature

• Field
− Antenna
− Magnetic

• Hall effect
• Flux gate

• Location
− Permittivity
− Dielectric

• Conductivity
• Many, many more
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Analog to digital

• Goal

• Process

SoftwareSensor ADC

Physical

Phenomena

Voltage or

Current

ADC Counts Engineering 

Units

Physical
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Engineering 
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Digital representation of analog signal

• Discretize in time and value.
• Time series of discrete values

V Counts

)(xf sampled

)(xf

t

ST
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Choosing the value range

• What do the sample values represent?
− Some fraction within the range of values

Range Too Small Range Too Big

Ideal Range

rV

t

rV

t

rV

rV

t

rV

rV
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Choosing the value resolution

• Resolution
− Number of discrete values that 

represent a range of analog values.
− MSP430: 12-bit ADC

• 4096 values
• Range / 4096 = Step

• Quantization Error
− How far off discrete value is from 

actual
− ½ LSB  Range / 8192→

Larger range → lower resolution
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Choosing the temporal resolution

• Too low: we can’t reconstruct the signal.
• Too high: waste computation, energy, resources.

)(xf sampled

)(xf

t
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Shannon-Nyquist sampling theorem

• If a continuous-time signal           contains no frequencies 

higher than        , it can be completely determined by 

discrete samples taken at a rate:

• Example:
− Humans can process audio signals 20 Hz – 20 KHz
− Audio CDs: sampled at 44.1 Khz

• Caveat: additional samples can have value if signal 

contains high-frequency noise.
− Allows low-pass filter to improve accuracy at cost of 

decreased effective samping rate. 

)(xf

maxf

maxsamples 2 ff 
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Converting between voltages, 
ADC counts, and engineering units

• Converting: ADC counts  Voltage→

• Converting: Voltage  Engineering Units→
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A note about sampling and arithmetic

• Common error converting values

float vtemp = adccount/4095 * 1.5;

float tempc = (vtemp-0.986)/0.00355;

Learn associativity and type conversion rules of ANSI C. 

• Fixed point operations
− Overflow and underflow dangers complicate design.
− This is deep. Talk to me if you want to try it.

• Floating point operations
− Often software emulated.
− Often slow, power-hungry on embedded processors.

00355.0

986.0
TEMP TEMP

C
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Use anti-aliasing filters on ADC inputs to
ensure that Shannon-Nyquist is satisfied

• Aliasing
− Different frequencies are indistinguishable when they 

are sampled.

• Condition the input signal using a low-pass filter
− Removes high-frequency components
− (a.k.a. anti-aliasing filter)



Do I really need to condition my input signal?

• Often.

• Many ADCs have analog filter built in.
• Those filters typically have a cut-off frequency 

just above ½ their maximum sampling rate.
• Which is great if you are using the maximum 

sampling rate, less useful if you are sampling at 

a slower rate.
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Designing the anti-aliasing filter

• w is in radians, w = 2πf
• R = 1/(C2πf)

• Goal: cutoff f = 30 Hz. Given: C = 0.1 μF.
• Question: R = ?



Oversampling

• Can intentionally introduce or leave high-

frequency noise and oversample.
• Reduces quantization error.
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Oversampling a 1-bit ADC w/ noise & dithering (cont)
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Lots of other issues

• Might need anti-imaging filter.
 Especially during analog signal reconstruction.
 Remove high-f components from stair stepping.

• Cost and power play a role.

• Might be able to avoid ADCs/DACs.
− E.g., PWM.
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DAC #1:  voltage divider

2-to-4 decoder

2

Din

Vout

• Fast
• Size: really big: O(2n)
• Accuracy?
• Monotonicity?

Vref

R

R

R

R



DAC #2: R/2R ladder 

D3 (MSB) D2 D1 D0 (LSB)

2R 2R 2R 2R

R R R 2R

Iout

Vref

•  Size: small O(n)
•  Accuracy?
•  Monotonicity?  (Consider 0111 -> 1000)



ADC #1:  flash
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ADC #2:  single-slope integration 

+

_Vin

n-bit counter

CLK

EN*

Vcc

• Start: Reset counter, discharge C.
• Charge C at fixed current I until Vc > Vin .  How should C, 

I, n, and CLK be related?
• Final counter value is Dout.
• Slow: conversion may take several milliseconds.

 O(2n)
• Good differential linearity (dI/dO)
• Absolute linearity depends on precision of C, I, and clock.

C
I



ADC #3: successive approximation

72

1 Sample → Multiple cycles

• Uses DAC for guessing.
• Faster: O(n)
• Goes from MSB to LSB.
• Not good for high-speed ADCs.



Errors and ADCs

• Figures and some text from:
− Understanding analog to digital converter 

specifications. By Len Staller
− http://www.embedded.com/showArticle.jhtml?ar

ticleID=60403334

• Key concept here is that the specification provides 

worst case values.

http://www.embedded.com/showArticle.jhtml?articleID=60403334
http://www.embedded.com/showArticle.jhtml?articleID=60403334






The integral nonlinearity (INL) is the deviation of an ADC's transfer function from a straight line. 

This line is often a best-fit line among the points in the plot but can also be a line that connects 

the highest and lowest data points, or endpoints. INL is determined by measuring the voltage 

at which all code transitions occur and comparing them to the ideal. The difference between 

the ideal voltage levels at which code transitions occur and the actual voltage is the INL error, 

expressed in LSBs. INL error at any given point in an ADC's transfer function is the accumulation 

of all DNL errors of all previous (or lower) ADC codes, hence it's called integral nonlinearity. 

Integral nonlinearity



DNL is the worst cases variation of actual step size vs. ideal step size.

  

It’s a promise it won’t be worse than X.

Differential nonlinearity





Full-scale error is also sometimes called “gain error”

Full-scale error is the difference between the ideal code transition to the highest 

output code and the actual transition to the output code when the offset error is zero. 



Errors

• Errors in a specification are bad.
− So if you have an INL of ±0.25 LSB, you “know” that the 

device will never have more than 0.25 LSB error from 

its ideal value.
− That of course assumes you are operating within the 

specification.
• Temperature, input voltage, input current 

available, etc.

• Integral nonlinearity and differential nonlinearity 

 are important.
− Should know what full-scale error is.
− Can compensate in software.

• Where is best place to compensate?
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