
1

EECS 373
Design of Microprocessor-Based Systems

Robert Dick
University of Michigan

Lecture 13: Review

21 February 2017

Slides inherited from Mark Brehob.

Outline

• Context and review
• Midterm evaluations
• Timers
• Serial buses
• Hazards
• Toolchain

2

Context and review

• Memory
 Classes of volatile and nonvolatile memory.
 Physical operating principles.
 Internal structures.
 Strengths and weaknesses.

• PCBs
 How to design.
 Techniques for noise immunity.
 Power distribution.

3

Outline

• Context and review
• Midterm evaluations
• Timers
• Serial buses
• Hazards
• Toolchain

4

Midterm evaluations: what to improve

• Homework: Some questions ambiguous.
• Lecture: Slower on examples.
• Slides: Avoid full sentences.

5

Lab 5 deadline, hours during break

• Extension: Lab 5 due 6pm on 6 March.
• 2pm-5pm on 3 or 4 March (Friday or Saturday).
• Decide.

6

Next topics

• Mechanical.
 Solenoids.
 Motors.
 Linear actuators.
 H-bridges.
 Shaft encoders.

• Circuits.
 Power, energy, temperature, reliability.
 Power supplies.
 Voltage regulators.
 Signal conditioning analog circuits.

• RTOSs.
• AFSM synthesis.

7

Breakpoints

• Hardware clock keeps running in breakpoints.
• C_DEBUGEN bit in the NVIC Debug Halting

Control and Status Register (DHCSR).
• Can only set with debugger.

8

Poll

9

Outline

• Context and review
• Midterm evaluations
• Timers
• Serial buses
• Hazards
• Toolchain

10

Anatomy of a timer system

11

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

...
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

Example timer problem

• Design a PWM LED controller.
• Crystal: 500 MHz.
• Divider: 12-bit.
• HW counter

 32-bit.
 Count-down only.
 One-shot only.

• LED
 Brightness highly non-linear in V.
 100 Ohm series R.
 100 nF C to ground.
 Phosphor decay halflife: 10 ms.

12

Outline

• Context and review
• Midterm evaluations
• Timers
• Serial buses
• Hazards
• Toolchain

13

Serial buses

• Tristate vs. open collector.
 Advantages and disadvantages.
 How they work.

• Addressing methods.
• Full/half-duplex.
• Signaling.
• Timing diagrams.
• Stall cycles.
• Master/slave.
• Read/write.

14

Outline

• Context and review
• Midterm evaluations
• Timers
• Serial buses
• Hazards
• Toolchain

15

 Race between variable transitions.
 May, but not must, produce a glitch.
 Glitch
 Static glitch: transient pulse of incorrect
value when output should be stable.

 Dynamic glitch: transient pulse of incorrect
value when output should be changing.

 Consider a minimal implementation of
 f(a, b, c) = a'b'c + a'bc + abc + abc'

Hazards

 Hazardous clock signal used to drive
special-purpose timer counter.

 Timer used for motor PWM.
 Two second watchdog timer on other

counter.
 Duty cycle constrained. Prevent arm

swinging out of safe zone in 2 seconds.
 Tested: safe.
 One day, T decreases by 10 degrees F.
 Code hangs, robot arm hits co-worker.

Hazards: what can go wrong

 Consider a minimal implementation of
 f(a, b, c) = a'b'c + a'bc + abc + abc'

 f(a, b, c) = a'c + ab
 What if b=1, c=1?

Hazards

 How to eliminate
 Limit logic to two levels
 Cover all transitions

 f(a, b, c) = a'c + ab + bc
 What if b=1, c=1?

Hazards Effect of hazards

 Hazards can often be ignored in
synchronous systems.

 Only sampling on clock edges.
 Make clocks slow enough for

glitching to finish before next
edge.

 Still wastes power.
 Causes major problems in

asynchronous systems.
− Different design style

required.

When hazards need special attention

 Asynchronous resets
− Can use a flip-flop on the input.

 Should have used synchronous reset.
− Clocks

 Hazards can produce spurious clock edges.
Traditionally, CLR is used

to indicate async reset. “R”

or “reset” for sync. reset.

If clk is high and cond

glitches, you get extra

edges!

Simple design rules

 Don't use asynchronous resets unless
you understand the implications fully.

 Don't drive a clock with logic
containing hazards.

 Hazard-free guarantee.
 Only two levels.
 Cover transitions.

 Literal or complement, not both.

X

X

Outline

• Context and review
• Midterm evaluations
• Timers
• Serial buses
• Hazards
• Toolchain

23

How does an assembly language program
get turned into a executable program image?

Assembly

files (.S)

Object

files (.o)

as

(assembler)

ld

(linker)

Memory

layout

Memory

layout

Linker

script (.ld)

Executable

image file

Binary program

file (.bin)

Disassembled

code (.lst)

ob
jc
op
y

objdump

What are the real GNU executable names for the ARM?

• Just add the prefix “arm-none-eabi-” prefix
• Assembler (as)

− arm-none-eabi-as

• Linker (ld)
− arm-none-eabi-ld

• Object copy (objcopy)
− arm-none-eabi-objcopy

• Object dump (objdump)
− arm-none-eabi-objdump

• Symbol table examiner (nl)
− arm-non-eabi-nm

• C Compiler (gcc)
− arm-none-eabi-gcc

• C++ Compiler (g++)
− arm-none-eabi-g++

all:

arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o

arm-none-eabi-ld -Ttext 0x0 -o example1.out example1.o

arm-none-eabi-objcopy -Obinary example1.out example1.bin

arm-none-eabi-objdump -S example1.out > example1.lst

A simple (hardcoded) Makefile example

What information does the disassembled file provide?

.equ STACK_TOP, 0x20000800

.text

.syntax unified

.thumb

.global _start

.type start, %function

_start:

.word STACK_TOP, start

start:

movs r0, #10

movs r1, #0

loop:

adds r1, r0

subs r0, #1

bne loop

deadloop:

b deadloop

.end

example1.out: file format elf32-littlearm

Disassembly of section .text:

00000000 <_start>:

 0: 20000800 .word 0x20000800

 4: 00000000 .word 0x00000000

00000008 <start>:

 8: 200a movs r0, #10

 a: 2100 movs r1, #0

0000000c <loop>:

 c: 1809 adds r1, r1, r0

 e: 3801 subs r0, #1

 10: d1fc bne.n c <loop>

00000012 <deadloop>:

 12: e7fe b.n 12 <deadloop>

all:

arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o

arm-none-eabi-ld -Ttext 0x0 -o example1.out example1.o

arm-none-eabi-objcopy -Obinary example1.out example1.bin

arm-none-eabi-objdump -S example1.out > example1.lst

.equSTACK_TOP, 0x20000800 /* Equates symbol to value */

.text /* Tells AS to assemble region */

.syntax unified /* Means language is ARM UAL */

.thumb /* Means ARM ISA is Thumb */

.global _start /* .global exposes symbol */

/* _start label is the beginning */

/* ...of the program region */

.type start, %function /* Specifies start is a function */

/* start label is reset handler */

_start:

.word STACK_TOP, start /* Inserts word 0x20000800 */

/* Inserts word (start) */

start:

movs r0, #10 /* We’ve seen the rest ... */

movs r1, #0

loop:

adds r1, r0

subs r0, #1

bne loop

deadloop:

b deadloop

.end

Elements of assembly language program?

$ arm-none-eabi-as -mcpu=cortex-m3 -mthumb example1.s -o example1.o

How are assembly files assembled?

• $ arm-none-eabi-as
− Useful options

• -mcpu
• -mthumb
• -o

How does a mixed C/Assembly program
get turned into a executable program image?

Assembly

files (.s)

Object

files (.o)

as

(assembler)

gcc

(compile

+ link)

Memory

layout

Memory

layout

Linker

script (.ld)

Executable

image file

Binary program

file (.bin)

Disassembled

Code (.lst)

ob
jc
op
y

objdump

ld

(linker)

Library object

files (.o)

C files (.c)

