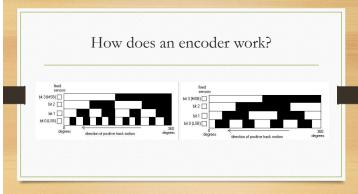
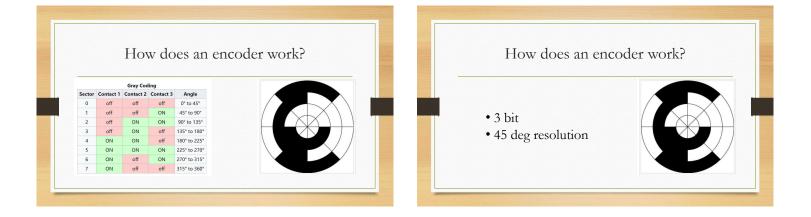
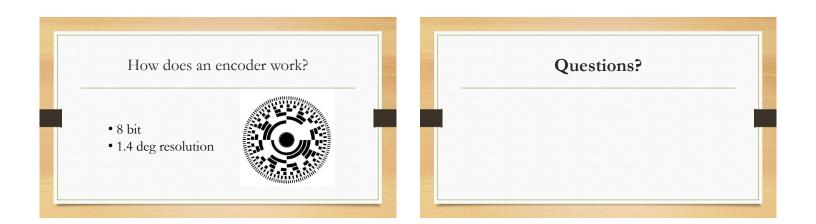
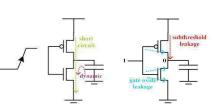

Absolute and incremental encoder


- Absolute encoder
- maintains position information when power is removed from the system

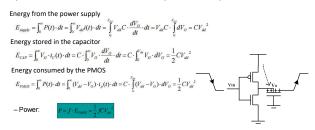

 Incremental encoder


can reports an incremental change in position of the encoder to the counting electronics

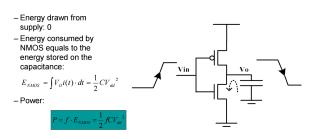
References

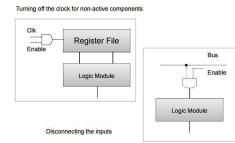

- <u>https://www.dfrobot.com/wiki/index.php/Micro_DC_Motor_with_Encod</u> er-SJ01_SKU: FTT0450
- <u>https://en.wikipedia.org/wiki/Rotary_encoder#Mechanical_absolute_encod_</u>

Power consumption in Microprocessor

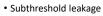

Yipeng Mou

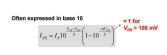
Three source of Power Consumption

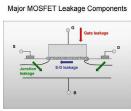

- Dynamic Power
- Static Power
- Short Circuit power


Dynamic Power Consumption: Input 1 -> 0

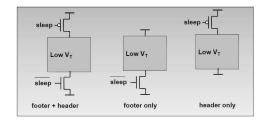
Dynamic Power Consumption: Input 0 -> 1




Clock Gating



Static Power Consumption



Power Gating

- ► Why is it important?
- ► What limits the design?
- ► How to fix?

Why is low power design important?

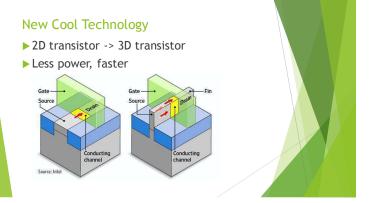
Low Power Design

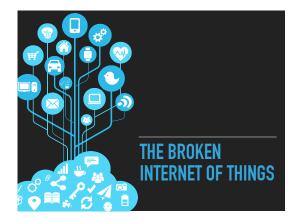
Jingyao Hu

Touch Bar and Touch ID 2.7GHz Processor 512GB Storage 2.7GHz quad-core Intel Core i7 processor Turbo Boost up to 3.6GHz 16GB 2133MHz memory 512GB PCIe-based SD¹ Radeon Pro 455 with 2GB memory Four Thunderbolt 3 ports Touch Bar and Touch ID

\$2,799.00

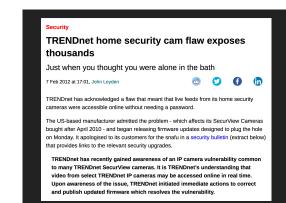
The limit of frequency

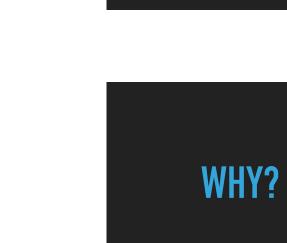

- ▶ P(dynamic) = C*V²*f
- ► f ~ V
- ► In fact, P (dynamic) = C*f³
- ▶ Enough heat to melt down



Old Technology

- Multiple cores
- Simple example:
- ► 70% frequency
- ▶ power = 0.7³ = 0.34 origin
- ▶ Two cores = 140% work with 68% power




Security

Students hack Tesla Model S, make all its doors pop open IN MOTION

PROBLEM:

- MANUFACTURERS' AND CONSUMERS' **INCENTIVES DO NOT ALIGN**
- **NO INCENTIVE TO PROVIDE SUPPORT FOR PRODUCTS WITH LOW PROFIT MARGINS**

SOLUTIONS

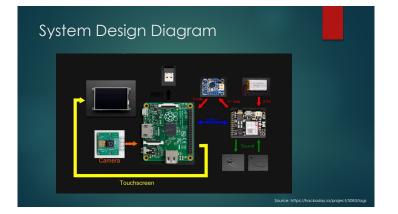
Minar 📀

X

Modular Design and Smartphones

Examples of Modular Design

- Adafruit offers several boards that make complicated devices such as a smartphone relatively simple.
 - Power management
 Protocol to send and receive messages/calls
- Most of the complications behind modular design is in the software.


Adafruit FONA uFL Version

- Send and receive sms messages
- ► LiPo battery charging circuit
- ▶ Just need to know UART

Example Smartphone Design

- - Brains of the device
 Connects all the devices together and runs the OS
- All-in-one cellphone module
 Interfaces with SIM card for network connection
- ► TYOS OS that allows the user to send messages and make calls
 Created by the author of this DIY project
- Powerboost 500 Basic
- Really just a TPS61090 boost converter
 Converts 1.8v+ to 5.2v

Relevance

- Show and describe a project and the lay out this project uses.
 Replace the Raspberry Pi with the Smartfusion
- Show another example of what we can do with embedded systems.

References

Questions?

Relevance

- Inevitable part in almost all embedded projects
- Simple means of of adding visual appeal to embedded applications
- Simple means or a adding visual appeal to embedded applications
 Usage
 Applications: computer monitors, TVs, instrument panels, aircraft cockpit displays
 Portable consumer devices: digital cameras, watches, calculators, smartphones
 Consume relectronics: DVD players, video game devices, clocks
 Replaced bulky cathode ray tube (CRT) in nearly all applications
- LCD modules with integrated RS-232, I2C, and SPI serial interfaces

Introduction

- Thin, flat consume small amount of power
 Rod-shaped tiny molecules sandwiched between a flat piece of glass and an
- opaque substrate
- Molecules align in two different physical positions based on electric charge applied to them
 - Apply charge: molecules align to block light entering
 No charge: molecules become transparent

Character vs. Graphic LCDs

- Character LCD
 - aracter LCD Displays numbers, letters and fixed symbols Used in old style industrial panel display where there's a need to display a fixed number of characters
- Graphic LCD
 - Instead of segments, has pixels in rows and columns
 By energizing set of pixels any character can be displayed

Interfacing 16x2 LCD

- Most common configuration used due to reduced cost and small footprint
- Displays 32 characters at a time in 2 rows (16 characters per row)
 0 40 character positions, remaining 24 only displayed with "scrolling" effect

Pin Configurations

Pin Configurations (cont'd)

7 DBo 8 DB1 9 DB2 10 DB3
 11
 DB4
 DB0-DB7 Deta pins for giving datalinormal data like numbers characters or command data which is meant to be displayed

 12
 DB5
 13 DB6 14 D87 15 LED* Back light of the LCD which should be connected to Vcc 16 LED- Back light of LCD which should be connected to ground.

Displaying data

Follow these simple steps for displaying a character or data

- E=1; enable pin should be high
- RS=1; Register select should be high
 R/W=0; Read/Write pin should be low

Sending a command

To send a command to the LCD just follows these steps:

- E=1; enable pin should be high
- RS=0; Register select should be low
 R/W=1; Read/Write pin should be high

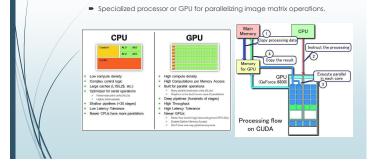
Commands

COMPANED	PONCTION
of	For switching on LCD, blinking the cursor.
1	Clearing the screen
2	Return home.
4	Decrement cursor
6	Increment cursor
ε	Display on and also cursor on
80	Force cursor to beginning of the first line
00	Force cursor to beginning of second line
38	Use two lines and pr/ matrix
83	Cursor line 1 position 3
30	Activate second line
0C3	Jump to second line position a
001	Jump to second line positions

Sources

- http://www.eeherald.com/section/design-guide/esmod17.html
- https://www.digikey.com/en/product-highlight/n/newhaven-display/lcd-serial-
- displays http://www.electronicshub.org/interfacing-16x2-lcd-8051/
- <u>http://embedjournal.com/interfacing-lcd-module-part-1/</u>

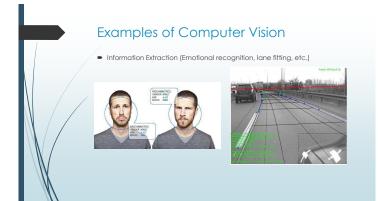
Thank you



Computer Vision Introduction

- Computer Vision is an interdisciplinary field that deals with how computers can be made for gaining high-level understanding from digital images or videos.
- From a software standpoint, computer vision works to apply mathematical theory to an input image to either modify it or extract meaning from it.
- This cannot be done without the embedded systems that provide input images and processing power.

Specialized Processing for Images



Examples of Computer Vision

 Scene Recreation (Picture stitching, 3D reconstruction, structure from motion, etc.)

References

- http://docs.opencv.org/
- https://www.embedded-vision.com/what-is-embedded-vision
- http://www.bdti.com/private/pubs/BDTI_ESC_Embedded_Vision.pdf
- http://www.embedded.com/design/system-integration/4372167/introduction-to-embedded-vision-and-the-OpenCV-library

Batteries and Power

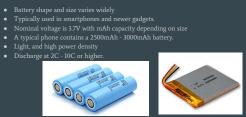
Embedded systems

- Embedded systems will usually require some sort of portable power source.
 The easiest way to provide this will be with a battery.
 Other options available Energy scavenging
 Solar panels, Motion, Heat
 Plug it in

Design Considerations

- Power Consumption
 Power Density
 Voltage requirements
 Battery size, weight
 System battery life.

AA style


- Cheap and plentiful
 Consumer usually pays
 Alkaline AA is approx 2500mAh @ 15V
 Ni-MH AA is J00-2500mAh @ 1.23V
 Used in many consumer electronics/gadgets
 Ni-MH as higher discharge
 Discharge at 0.5C 1C

CR2032 + coin cells

Lithium

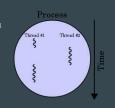
Runtime

- Find the application's average power consumption mA or mW
 Divide capacity by power consumption mAh / mA or mWh / mW
 Ex: a 2000mAh battery with 200mA drain will last 2000/200 = 10 hours

Runtime Complications

- A 1.5V alkaline cell (2500mAh) with a 100mA drain will run about 25 hours However, with a 2.5A drain, will run for much less than 1 hour
 The culprit? Internal resistance
 Generally, higher drain will reduce battery capacity and battery life.

Multithreading for Dummies •••


Brandon Waggoner March 23, 2017

Motivation

- Speed up code executionReduce redundancySqueeze out extra "performance"

Can you sew with it?

- A thread is a stream of execution, complete with its own stack pointer, **local** variables, and
- With its own state pointer, boar context
 Threads often run out of order, and can give the appearance of running two functions simultaneously

Embedded Systems and You

- Multithreading isn't always the best solution
 "Among competing hypotheses, the one with the fewest assumptions should be selected."
 (Occurs Rasor)
 Oten (determinism is more valued than throughput
- Threading requires a significant effort
 Timing and exclusivism are up in the air
 More places for things to go wrong
 Debugging becomes a headache

Then Why

- It's funAutomate remedial tasksPrevent busy loops

How to get started

Agenda

- What are smart cities?

- Challenges ahead

What are smart cities?

- A city that collects and bases its decisions on vast amounts of data to best utilize their resources, improve living conditions, and manage infrastructure
- Data collection (massive sensor network)
- Connectivity (5G, IoT, etc)
- Analysis (Data analytics, machine learning, etc)
- Sustainable policy

Is there a need?

• YES!

- Motivations behind the movement
- Climate change
- Public health crises
- Congested commutes
- High costs of living
- Fossil fuel dependency
- * A new set of technologies connectivity, real-time sensors, precise location services, autonomous systems can collectively transform city life

Benefits of smart cities

Mobility

- Analyze population flow/transportation to better public transport
- Solve the problem of never having enough parking
- $\, \star \, {\rm Smart \ roads} {\rm energy \ harvesting, \ alert \ cars/municipalities \ of \ their \ condition}$
- Environment
- Green buildings
- ${\scriptstyle \bullet}$ Smart water systems/irrigation methods
- Smart grid
- Digital divide
- Granting internet access to underprivileged people

Benefits of smart cities

- Manufacturing & Trade
- ${\ensuremath{\cdot}}$ More streamlined systems for production and distribution
- Government
- Enable to be more 'in touch' with constituents
- Health
- Monitors for dangerous levels of gases
- Reducing pollution

Challenges ahead

- Most obvious security
- Scaling
- Smart city model depends on the development of:
 - Cooperative government
- Smart and engaged citizens
- Sinart and engaged entitens

Key players

- GE Energy
- Cisco Internet support
- AT&T/Verizon IoT ecosystem
- Google Data, Autonomous vehicles
- Sidewalk Labs bridging gap between tech + policy

Logic Circuit Minimization with Espresso

Gigi Guarino

What is espresso?

A program used to minimize logic circuits and boolean functions
Developed by the University of California, Berkeley, in the 1990's

Why is this helpful?

For our project:

• Minimize the combinational logic in our Verilog

In RTL design:

• Minimize the amount of logic gates

Input	example.pla
A .pla file	.13
Specify number of inputs with .i	000 0
Specify number of outputs with .o	001 1
Truth table for only outputs that result in a 1	011 0
Signify end of file with .e	101 0
	111 0

.e

Output

To run espresso from command line ...

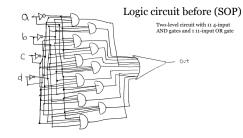
With no flag, outputs a minimized .pla file in sum of products form \$ espresso.exe input.pla

With flag -epos, outputs a minimized .pla file in product of sums form \$ espresso.exe -epos input.pla > output.pla

SOP vs. POS

Sum of products example: out = a'b'c + a'bc' + ab'c'	abc out
Product of sums example: out = (a + b + c) (a + b' + c') (a' + b + c') (a' + b' + c) (a' + b' + c')	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	1 1 1 0

Example:

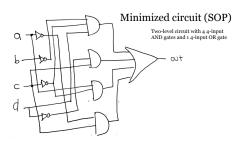

	L .		
a b c d	out		.i 4
0000	0	To the left is a truth table for our desired	.0 1
0 0 0 1	1	logic circuit	
0 0 1 0	1	logic circuit	0001
0 0 1 1	1		0010
0 1 0 0	0	To the right is the .pla file we are going to	0011
0 1 0 1	0	input to espresso	0110
0 1 1 0	1		0111
0 1 1 1	1	It has 4 inputs	1000
1000	1	It has 1 output	1001
1 0 0 1	1		1010
1 0 1 0	1		1100
1 0 1 1	0	The truth table only contains the input	1101
1 1 0 0	1	combinations that result in a 1, the 0's	1110
1 1 0 1	1	could be included but are unnecessary	
1 1 1 0	1	could be included but are unnecessary	.e
1 1 1 1	0		

Logic function before

SOP: f(a,b,c,d) = a'b'c'd + a'b'cd' + a'b'cd + a'bcd' + a'bcd + ab'c'd' + ab'c'd + abc'd' + abc'd + abcd'

POS:

FOS: f(a,b,c,d) = (a + b + c + d) (a + b' + c + d) (a + b' + c + d') (a' + b + c' + d') (a' + b' + c' + d')


Output .pla

\$ espresso.exe abcd.pla	\$ espresso.exe -epos abcd.pla
.i 4 .o 1 .p 4 -001 1 10 1 1-0- 1 0-1- 1	.i 4 .o 1 .#phase 0 .p 3 1-11 1 0-00 1 010- 1 .e

Minimized functions

SOP: f(a,b,c,d) = b'c'd + cd' + ac' + a'c

POS: f(a,b,c,d) = (a + c + d)(a' + c' + d')(a' + b + c')

Questions?

Sensors used in Self-Driving Vehicles Presented by Saad Shaik

Introduction

- Self-driving vehicles need to read a variety of information about their surroundings
- Different sensors have their own unique advantages and disadvantages
- Measuring all necessary information requires an array of specialized sensors
- The three main sensing techniques are LIDAR, Radar, and Cameras

LIDAR

- Stands for Light Detection and Ranging
- Scans the surroundings by rotating a laser and measuring the reflected intensity
- Provides information on the distance, shapes, and speed of nearby objects
- Range of 100m with resolution of ~10cm
- Pros:
 - Mid-range, high precision object detection
 - · Generates 3D maps to detect hills
- Accurately detects stationary objects

Radar

- Stands for Radio Detection and Ranging
- Scans the surroundings with radio waves and measures the reflected intensity
- Provides information on the distance and velocity of near to mid-range objects
- Pros:
 - · Works in all weather conditions; rain, snow, fog
 - $^{\circ}\,$ Radar can see behind obstacles and two cars ahead
 - Accurate for close range object detection, useful for parking and lane-changing

Camera

- Uses a camera to capture visual and color data of the surroundings
- Provides information on visual cues such as traffic lights, cones, signs, lane markers
- Range of up to 250m
- Pros:
 - Only sensor that can detect color and text, can differentiate objects based on color
 - · Best sensor for scene interpretation
 - · Cheap enough to have multiple on one car

Summary

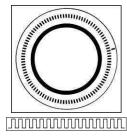
- Each sensor has its own advantages and specialized use cases
- LIDAR is used for precision object detection and 3D mapping
- Radar is used for measuring velocities and validating LIDAR in all weather conditions
- Cameras are used for visual cues and color detection
- The best self-driving system will have a multisensor network to include each sensor's unique advantages

Works Cited

- Ι. "Self-driving vehicles -- are we nearly there yet?" Rudy Ramos http://www.embedded.com/electronics-blogs/say-what-/4442823/Self-driving-vehicles---are-we-nearly-there-ye
- "Autonomous Cars' Pick: Camera, Radar, Lidar?" Davide Santo http://www.eetimes.com/author.asp?section_id=36&doc_id=1330 2. 069
- "Self-driving cars will bristle with sensors" Stephen Shankland 3. https://v ews/self-driving-cars-w ill-bristle-with-
- 4. "Self-Driving Cars' Spinning-Laser Problem" Tom Simonite https://www.technologyreview.com/s/603885/autonomous-carslidar-sensors/
- "The Autonomous Car: A Diverse Array of Sensors Drives 5. Navigation, Driving, and Performance" Bill Schweber http://www.mouser.com/applications/autonomous-car-sensorsdrive-performance/

Quadrature Decoding

Christopher Schmotzer March 23, 2017


Motivation

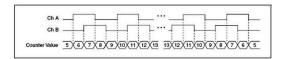
- Position and Velocity Measurements for Motor Control

 - Tachometer
 Tachometer
 Potentiometer
 Optical Encoder
 Incremental Encoder

Incremental Encoder

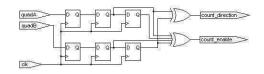
http://www.ni.com/white-paper/14805/en/

Quadrature Encoder


http://www.ni.com/tutorial/7109/en/ http://www.ni.com/white-paper/4763/en/

Direction of Rotation

 Phase Difference corresponds to Direction of Rotation Channel A leads Channel B implies Increment
 Channel B leads Channel A implies Decrement



Quadrature Decoder

http://www.ni.com/tutorial/7109/en/

Block Diagram

http://www.fpga4fun.com/QuadratureDecoder.html

Implementation

module quad(clk, quadA, quadB, count); input clk, quadA, quadB; output [7:0] count; reg [2:0] quadA_delayed, quadB_delayed; always @(posedge dk) quadA_delayed <= {quadA_delayed[1:0], quadA}; always @(posedge dk) quadB_delayed <= {quadB_delayed[1:0], quadB};

wire count_enable = quadA_delayed[1] ^ quadA_delayed[2] ^ quadB_delayed[1] ^ quadB_delayed[2]; wire count_direction = quadA_delayed[1] ^ quadB_delayed[2];

eng [7:0] count_encount+(count_count);] encount_encount-(count-i); always @(posedge cik) begin Hitcount_direction) count<=count+1; else count<=count-1; end end

endmodule

http://www.fpga4fun.com/QuadratureDecoder.html

APPENDIX: Types of Decoding

- 1X Counter is incremented/decremented by rising edges of one channel only
 Cannot determine direction
- 2X
 Counter is incremented/decremented by rising AND falling edges of one channel only Cannot determine direction
- 4X Counter Is incremented/decremented by rising and falling edges of Channels A and B
 Can determine direction

APPENDIX: Definitions

- Cycles Per Revolution (CPR)
- Optics Enteronation (CFT) shaft revolution (360 mechanical degrees)
 Onaber of full quadrature cycles per full shaft revolution (360 mechanical degrees)
 200 CPR encoder provides 200, 400, or 800 distinct positions in 1x, 2x, or 4x modes
 respectively
 Quadrature
- Phase difference of 90° between two waves at the same frequency

