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Context and review

 Response to Embedded Systems stand-up routine.
− Confusion  fear  nervous laughter  relief.→ → →

 Hardware vs. software programming.
 APB

− How to interface with a bus.
− Need to understand how to do this with a shared bus.
− Don't need tristate buffers for SmartFusion board.
− Review handwritten notes and lecture video if still 

fuzzy.
 Several other topics: volatile, function pointers, weak 

references.
− Use the source.
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Hardware vs. software programming (again)

 Reasons covering
 Common sticking point
 A few students have had trouble with this in lab

 HDL  FPGA→

 Control which functions (gates) are implemented.
 Control how they are connected.

 Assembly/C  ARM Cortex M-3→

 Control instruction sequences.
 Control data to load into memory before execution.

 Implications
 When you write to an MMIO address, the 

processor/bus controller know how to set and time 

bus signals. Someone else built that.
 Your peripheral (SPIO in Lab 3) needs to react to those 

signals appropriately.
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Interrupts

Why do these matter?
• Informs a program of some (usually) external 

event.
• Interrupts execution flow.
• Enables event-driven system design!!!

 Low-power.
 Often simpler.

Key questions:
• Where do interrupts come from?
• How do we save state for later continuation?
• How can we ignore interrupts?
• How can we prioritize interrupts?
• How can we share interrupts?
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I/O data transfer

Two key questions to determine how data are 

transferred to/from a non-trivial I/O device.

1. How does the CPU know when data are 

available?

a. Polling.

b. Interrupts.

 

2. How are data  transferred into and out of the 

device?

a. Programmed I/O

b. Direct Memory Access (DMA)
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Interrupts

Interrupt (a.k.a. exception or trap) causes CPU to stop executing 

program and execute an interrupt handler or interrupt service 

routine (ISR).  The ISR does something and then control is 

returned to the interrupted program.

Interrupts are similar to procedure calls. However,
• can occur between any two instructions and even within 

some instructions,
• are transparent to the running program (usually),
• are not explicitly requested by the program (typically), 

and
• call a procedure at an address determined by the type of 

interrupt, not the program.
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Instruction-triggered interrupts

• TLB miss.
• Illegal/unimplemented instruction.
• Divide by 0.
• Trap instruction.
• Names: trap, exception, software interrupt.
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Externally triggered interrupts

• External device
• Reset button
• Timer expires
• Power failure
• System error
• Names: interrupt, external interrupt, hardware 

interrupt
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Interrupt process

• Something tells the processor there is an 

interrupt, e.g., via an input pin.
• Processor transfers control to code that needs to 

be executed through interrupt vector or jump 

table.
• ISR executes.
• Resumes prior program at same location.
• Doing this right is complex.
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Interrupts complicate processor design

• Which ISR to call?

• How to resume program when done?
− Instruction pointer? Other state?

• What about partially executed instructions in the 
pipeline?

• What if we get an interrupt while we are 
processing our interrupt?

− What if we are in a “critical section?”
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Where

• If you know the interrupt source.
− Interrupt vector.
− Jump table.

• If not.
− Must poll all sources to find out.
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Returning

• Need to store the return address 

somewhere.
− Stack would involve a load/store that might 

cause another interrupt.
− Dedicated register.

• What if there is another interrupt?
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Implications of architectural optimizations

• Out-of-order execution
− If any state of a “too fast” instruction made 

its way out of the processor before an 

interrupt, system state corrupted.
• Need to clean things up before/in ISR.
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Nested interrupts

• Just handle it.
− If a dedicated interrupt return IP register is being 

used, how many do we need?
− What if the ISR is half-way through a precisely 

times bus transaction?
• Ignore it: Bad if it is important.
• Prioritize.

− Take more important interrupts.
− Ignore the rest
− Still have dedicated register problems.
− Have to consider possibility of ISR failing due to 

timing problems.
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Critical section

• Ignore less important interrupts.
• Take more important interrupts.
• Avoid causing exceptions in interrupt code.
• Keep as short as possible.

− E.g., write a value to memory that informs 

the program of something.
− Program deals with it at a good time.
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Example: generally bad

void isr(void) {

    Do something complex/slow.

}
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Example: generally good

void isr(void) {

    ++(*button_pressed);

}

int superloop(void) {

    while (1) {

        if (*button_pressed) {

            --(*button_pressed);

            button_service();

        }

        Do other stuff, like AI.

        Could also sleep.

    }

}
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SmartFusion interrupt sources
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Interrupt vectors
 (in startup_a2fxxxm3.s found in CMSIS, startup_gcc)

g_pfnVectors:

    .word  _estack

    .word  Reset_Handler

    .word  NMI_Handler

    .word  HardFault_Handler

    .word  MemManage_Handler

    .word  BusFault_Handler

    .word  UsageFault_Handler

    .word  0

    .word  0

    .word  0

    .word  0

    .word  SVC_Handler

    .word  DebugMon_Handler

    .word  0

    .word  PendSV_Handler

    .word  SysTick_Handler

    .word  WdogWakeup_IRQHandler

    .word  BrownOut_1_5V_IRQHandler

    .word  BrownOut_3_3V_IRQHandler

.............. (they continue) 
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Interrupt handlers
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Pending interrupts
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The normal case.  Once Interrupt request is seen, processor puts it in 

“pending” state even if hardware drops the request. 

IPS is cleared by the hardware once we jump to the ISR.

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4
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In this case, the processor never took the interrupt because we cleared the 

IPS by hand (via a memory-mapped I/O register)

Untaken interrupts
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Answer

29

Interrupt pulses before entering ISR
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Answer
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Tail chaining

• Processor can serve multiple interrupts without returning 

to program.
• Improves response latency.

− No need for state save/restore.
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Interrupt priorities

• If multiple interrupts arrive at same time, prioritize.
• 3 fixed highest priorities.
• Up to 256 programmable priorities and 128 preemption 

levels.
• Particular processors support a subset of priorities.
• SmartFusion supports 32 priorities: five highest bits.
• 0, 8, 16, 32, 24, 32, …
• Higher priorities preempt lower.
• Priority can be sub-divided into groups.

 Splits register into preempt priority and subpriority.
 Subpriority used if two interrupts with same preempt 

priority arrive at same time. 
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Use 

PRIGROUP 

field to control 

split.
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Masking
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Example of complexity: the Reset Interrupt

1) No power.

2) System is held in RESET as long as VCC15 < 0.8V.

a) In reset: registers forced to default.

b)  RC-Osc begins to oscillate.

c) MSS_CCC drives RC-Osc/4 into FCLK.

d) PORESET_N is held low.

3) Once VCC15GOOD, PORESET_N goes high.

a) MSS reads from eNVM address 0x0 and 0x4.
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The xPSR register layout
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WFI: Wait For Interrupt
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 Puts processor in low-power mode and waits for interrupt.
 Why?

Two stacks? MSP and PSP
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 OS always uses MSP.
 Can configure processor so program uses PSP.
 Makes it harder for application code to corrupt OS/superloop state. 
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Timers

• Why they matter?
• Avoid pitfalls of loop-based delays.

 Waste power.
 Prevent other useful work from being done.

• Why they are complex?
 Span HW/SW boundary.
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iPhone Clock App
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• World Clock – display 

real time in multiple 

time zones

 
• Alarm – alarm at certain 

(later) time(s). 

 
• Stopwatch – measure 

elapsed time of an 

event.

 
• Timer – count down time 

and notify when count 

becomes zero.

Motor and light Control
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• Servo motors – PWM 

signal provides control 

signal.

 

 
• DC motors – PWM signals 

control power delivery.

 

 
• RGB LEDs – PWM signals 

allow dimming through 

current-mode control.

Methods from Android SystemClock
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Standard C library’s <time.h> header file
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Standard C library’s <time.h> header file: struct tm
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Anatomy of a timer system

54

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software
 

Hardware

Applications
 

Operating System

Internal
 

External

module timer(clr, ena, clk, alrm); 
  input clr, ena, clk;
  output alrm;
  reg alrm;
  reg [3:0] count;
 
  always @(posedge clk) begin
    alrm <= 0;
    if (clr) count <= 0;
    else count <= count+1;
  end
endmodule
 

...
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
  timer_handler_t handler;
  uint32_t time;
  uint8_t mode;
  timer_t* next_timer;
} timer_t;

timer_tick:
  ldr r0, count;
  add r0, r0, #1
  ... 



Anatomy of a timer system
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module timer(clr, ena, clk, alrm); 
  input clr, ena, clk;
  output alrm;
  reg alrm;
  reg [3:0] count;
 
  always @(posedge clk) begin
    alrm <= 0;
    if (clr) count <= 0;
    else count <= count+1;
  end
endmodule
 

 
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
  timer_handler_t handler;
  uint32_t time;
  uint8_t mode;
  timer_t* next_timer;
} timer_t;

timer_tick:
  ldr r0, count;
  add r0, r0, #1
  ... 

Timer requirements
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• Wall clock date & time
• Date: Month, Day, Year
• Time: HH:MM:SS:mmm
• Provided by a “real-time clock” or RTC

• Alarm: do something (call code) at certain time later
• Later could be a delay from now (e.g., Δt)
• Later could be actual time (e.g., today at 3pm)

• Stopwatch: measure (elapsed) time of an event
• Instead of pushbuttons, could be function calls or
• Hardware signals outside the processor

Timer requirements
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• Wall clock
• datetime_t getDateTime()

• Alarm
• void alarm(callback, delta)
• void alarm(callback, datetime_t)

• Stopwatch: measure (elapsed) time of an event
• t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
• GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address

Wall Clock from a Real-Time Clock (RTC)
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• Often a separate module
• Built with registers for

• Years, Months, Days
• Hours, Mins, Seconds

• Alarms: hour, min, day
• Accessed via

• Memory-mapped I/O
• Serial bus (I2C, SPI)

Timer requirements
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• Wall clock
• datetime_t getDateTime()

• Alarm
• void alarm(callback, delta)
• void alarm(callback, datetime_t)

• Stopwatch: measure (elapsed) time of an event
• t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
• GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address

Anatomy of a timer system
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module timer(clr, ena, clk, alrm); 
  input clr, ena, clk;
  output alrm;
  reg alrm;
  reg [3:0] count;
 
  always @(posedge clk) begin
    alrm <= 0;
    if (clr) count <= 0;
    else count <= count+1;
  end
endmodule
 

 
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
  timer_handler_t handler;
  uint32_t time;
  uint8_t mode;
  timer_t* next_timer;
} timer_t;

timer_tick:
  ldr r0, count;
  add r0, r0, #1
  ... 



Oscillators – RC 
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Oscillators – Crystal 
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Anatomy of a timer system
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module timer(clr, ena, clk, alrm); 
  input clr, ena, clk;
  output alrm;
  reg alrm;
  reg [3:0] count;
 
  always @(posedge clk) begin
    alrm <= 0;
    if (clr) count <= 0;
    else count <= count+1;
  end
endmodule
 

 
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
  timer_handler_t handler;
  uint32_t time;
  uint8_t mode;
  timer_t* next_timer;
} timer_t;

timer_tick:
  ldr r0, count;
  add r0, r0, #1
  ... 

Timer requirements
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• Wall clock
• datetime_t getDateTime()

• Alarm
• void alarm(callback, delta)
• void alarm(callback, datetime_t)

• Stopwatch: measure (elapsed) time of an event
• t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
• GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address

There are two basic activities one wants timers for:
• Measure how long something takes

– “Capture”
• Have something happen once or every X time 

period
– “Compare”

Timer applications

 Fan
− Say you have a fan spinning and you want to know 

how fast it is spinning.  One way to do that is to 

have it throw an interrupt every time it completes a 

rotation. 
 Right idea, but might take a while to process the 

interrupt, heavily loaded system might see slower fan than 

actually exists.
 This could be bad.

− Solution?  Have the timer note immediately how 

long it took and then generate the interrupt. Also 

restart timer immediately.
 Same issue would exist in a car when measuring speed 

of a wheel turning (for speedometer or anti-lock 

brakes).

Example # 1: Capture



• Driving a DC motor via PWM.
– Motors turn at a speed determined by the 

voltage applied.
• Doing this in analog can be hard.

– Need to get analog out of our processor
– Need to amplify signal in a linear way 

(op-amp?)
» Generally prefer just switching 

between “Max” and“Off” quickly.
– Average is good enough.
– Now don’t need linear amplifier—just 

“on” and “off”. (transistor)
– Need a signal with a certain duty cycle and 

frequency.
• That is % of time high.

Example # 2: Compare

• Assume 1 MHz CLK
• Design “high-level” circuit to

– Generate 1.52 ms pulse
– Every 6 ms
– Repeat

• How would we generalize this?

Servo motor control: class exercise
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 SysTick Timer
− ARM requires every Cortex-M3 to have this 

timer.
− 24-bit count-down timer to generate system 

ticks.
− Has own interrupt.
− Clocked by FCLK with optional programmable 

divider.
 See Actel SmartFusion MSS User Guide for 

register definitions.

Timers on the SmartFusion

htp://www.actel.com/documents/SmartFusion_MSS_UG.pdf

Timers on the SmartFusion Timers on the SmartFusion



• System imer
– “The System Timer consists of two programmable  

32-bit decremening  counters that generate 

interrupts to the ARM® Cortex™-M3 and FPGA 

fabric. Each  counter has two possible modes of 

operaion: Periodic mode or One-Shot mode.  The 

two imers can be concatenated to create a 64-bit 

imer with Periodic and One-Shot modes. The two 

32-bit imers are idenical”

htp://www.actel.com/documents/SmartFusion_MSS_UG.pdf

Timers on the SmartFusion Anatomy of a timer system
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module timer(clr, ena, clk, alrm); 
  input clr, ena, clk;
  output alrm;
  reg alrm;
  reg [3:0] count;
 
  always @(posedge clk) begin
    alrm <= 0;
    if (clr) count <= 0;
    else count <= count+1;
  end
endmodule
 

 
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
  timer_handler_t handler;
  uint32_t time;
  uint8_t mode;
  timer_t* next_timer;
} timer_t;

timer_tick:
  ldr r0, count;
  add r0, r0, #1
  ... 

• Can we use more timers than exist in hardware?
• Yes. Use hardware timers as a foundation for 

software-controlled virtual timers.
• Maybe we have 10 events we might want to 

generate.
• Make a list of them and set the timer to go off 

for the first one.  
• Repeat.

Virtual timers

• Only works for “compare” imer uses.
• Will result in slower ISR response ime.

– May not care, could just schedule sooner.

Problems?


