
1

EECS 373
Design of Microprocessor-Based Systems

Robert Dick

University of Michigan

Lecture 7: Interrupts

26 January 2017

Slides inherited from Mark Brehob.

Outline

• Context and review
• Interrupts

− General characteristics
− Our Cortex M-3

• Timers
− General characteristics
− SmartFusion board

2

Context and review

 Response to Embedded Systems stand-up routine.
− Confusion fear nervous laughter relief.→ → →

 Hardware vs. software programming.
 APB

− How to interface with a bus.
− Need to understand how to do this with a shared bus.
− Don't need tristate buffers for SmartFusion board.
− Review handwritten notes and lecture video if still

fuzzy.
 Several other topics: volatile, function pointers, weak

references.
− Use the source.

3 4

Hardware vs. software programming (again)

 Reasons covering
 Common sticking point
 A few students have had trouble with this in lab

 HDL FPGA→

 Control which functions (gates) are implemented.
 Control how they are connected.

 Assembly/C ARM Cortex M-3→

 Control instruction sequences.
 Control data to load into memory before execution.

 Implications
 When you write to an MMIO address, the

processor/bus controller know how to set and time

bus signals. Someone else built that.
 Your peripheral (SPIO in Lab 3) needs to react to those

signals appropriately.

Outline

• Context and review
• Interrupts

− General characteristics
− Our Cortex M-3

• Timers
− General characteristics
− SmartFusion board

5

Interrupts

Why do these matter?
• Informs a program of some (usually) external

event.
• Interrupts execution flow.
• Enables event-driven system design!!!

 Low-power.
 Often simpler.

Key questions:
• Where do interrupts come from?
• How do we save state for later continuation?
• How can we ignore interrupts?
• How can we prioritize interrupts?
• How can we share interrupts?

6

I/O data transfer

Two key questions to determine how data are

transferred to/from a non-trivial I/O device.

1. How does the CPU know when data are

available?

a. Polling.

b. Interrupts.

2. How are data transferred into and out of the

device?

a. Programmed I/O

b. Direct Memory Access (DMA)

7

Interrupts

Interrupt (a.k.a. exception or trap) causes CPU to stop executing

program and execute an interrupt handler or interrupt service

routine (ISR). The ISR does something and then control is

returned to the interrupted program.

Interrupts are similar to procedure calls. However,
• can occur between any two instructions and even within

some instructions,
• are transparent to the running program (usually),
• are not explicitly requested by the program (typically),

and
• call a procedure at an address determined by the type of

interrupt, not the program.

8

Instruction-triggered interrupts

• TLB miss.
• Illegal/unimplemented instruction.
• Divide by 0.
• Trap instruction.
• Names: trap, exception, software interrupt.

9

Externally triggered interrupts

• External device
• Reset button
• Timer expires
• Power failure
• System error
• Names: interrupt, external interrupt, hardware

interrupt

10

Interrupt process

• Something tells the processor there is an

interrupt, e.g., via an input pin.
• Processor transfers control to code that needs to

be executed through interrupt vector or jump

table.
• ISR executes.
• Resumes prior program at same location.
• Doing this right is complex.

11

Interrupts complicate processor design

• Which ISR to call?

• How to resume program when done?
− Instruction pointer? Other state?

• What about partially executed instructions in the
pipeline?

• What if we get an interrupt while we are
processing our interrupt?

− What if we are in a “critical section?”

12

Where

• If you know the interrupt source.
− Interrupt vector.
− Jump table.

• If not.
− Must poll all sources to find out.

13

Returning

• Need to store the return address

somewhere.
− Stack would involve a load/store that might

cause another interrupt.
− Dedicated register.

• What if there is another interrupt?

14

Implications of architectural optimizations

• Out-of-order execution
− If any state of a “too fast” instruction made

its way out of the processor before an

interrupt, system state corrupted.
• Need to clean things up before/in ISR.

15

Nested interrupts

• Just handle it.
− If a dedicated interrupt return IP register is being

used, how many do we need?
− What if the ISR is half-way through a precisely

times bus transaction?
• Ignore it: Bad if it is important.
• Prioritize.

− Take more important interrupts.
− Ignore the rest
− Still have dedicated register problems.
− Have to consider possibility of ISR failing due to

timing problems.

16

Critical section

• Ignore less important interrupts.
• Take more important interrupts.
• Avoid causing exceptions in interrupt code.
• Keep as short as possible.

− E.g., write a value to memory that informs

the program of something.
− Program deals with it at a good time.

17

Example: generally bad

void isr(void) {

 Do something complex/slow.

}

18

Example: generally good

void isr(void) {

 ++(*button_pressed);

}

int superloop(void) {

 while (1) {

 if (*button_pressed) {

 --(*button_pressed);

 button_service();

 }

 Do other stuff, like AI.

 Could also sleep.

 }

}

19

Outline

• Context and review
• Interrupts

− General characteristics
− Our Cortex M-3

• Timers
− General characteristics
− SmartFusion board

20

21

SmartFusion interrupt sources

22

Interrupt vectors
 (in startup_a2fxxxm3.s found in CMSIS, startup_gcc)

g_pfnVectors:

 .word _estack

 .word Reset_Handler

 .word NMI_Handler

 .word HardFault_Handler

 .word MemManage_Handler

 .word BusFault_Handler

 .word UsageFault_Handler

 .word 0

 .word 0

 .word 0

 .word 0

 .word SVC_Handler

 .word DebugMon_Handler

 .word 0

 .word PendSV_Handler

 .word SysTick_Handler

 .word WdogWakeup_IRQHandler

 .word BrownOut_1_5V_IRQHandler

 .word BrownOut_3_3V_IRQHandler

.............. (they continue)

23

Interrupt handlers

24

Pending interrupts

25

The normal case. Once Interrupt request is seen, processor puts it in

“pending” state even if hardware drops the request.

IPS is cleared by the hardware once we jump to the ISR.

This figure and those following are from The Definitive Guide to the ARM Cortex-M3, Section 7.4

26

In this case, the processor never took the interrupt because we cleared the

IPS by hand (via a memory-mapped I/O register)

Untaken interrupts

27 28

Answer

29

Interrupt pulses before entering ISR

30

Answer

31 32

Tail chaining

• Processor can serve multiple interrupts without returning

to program.
• Improves response latency.

− No need for state save/restore.

33 34

35 36

Interrupt priorities

• If multiple interrupts arrive at same time, prioritize.
• 3 fixed highest priorities.
• Up to 256 programmable priorities and 128 preemption

levels.
• Particular processors support a subset of priorities.
• SmartFusion supports 32 priorities: five highest bits.
• 0, 8, 16, 32, 24, 32, …
• Higher priorities preempt lower.
• Priority can be sub-divided into groups.

 Splits register into preempt priority and subpriority.
 Subpriority used if two interrupts with same preempt

priority arrive at same time.

37 38

39

Use

PRIGROUP

field to control

split.

40

Masking

41 42

Example of complexity: the Reset Interrupt

1) No power.

2) System is held in RESET as long as VCC15 < 0.8V.

a) In reset: registers forced to default.

b) RC-Osc begins to oscillate.

c) MSS_CCC drives RC-Osc/4 into FCLK.

d) PORESET_N is held low.

3) Once VCC15GOOD, PORESET_N goes high.

a) MSS reads from eNVM address 0x0 and 0x4.

43

The xPSR register layout

44

WFI: Wait For Interrupt

45

 Puts processor in low-power mode and waits for interrupt.
 Why?

Two stacks? MSP and PSP

46

 OS always uses MSP.
 Can configure processor so program uses PSP.
 Makes it harder for application code to corrupt OS/superloop state.

Outline

• Context and review
• Interrupts

− General characteristics
− Our Cortex M-3

• Timers
− General characteristics
− SmartFusion board

47

Timers

• Why they matter?
• Avoid pitfalls of loop-based delays.

 Waste power.
 Prevent other useful work from being done.

• Why they are complex?
 Span HW/SW boundary.

48

iPhone Clock App

49

• World Clock – display

real time in multiple

time zones

• Alarm – alarm at certain

(later) time(s).

• Stopwatch – measure

elapsed time of an

event.

• Timer – count down time

and notify when count

becomes zero.

Motor and light Control

50

• Servo motors – PWM

signal provides control

signal.

• DC motors – PWM signals

control power delivery.

• RGB LEDs – PWM signals

allow dimming through

current-mode control.

Methods from Android SystemClock

51

Standard C library’s <time.h> header file

52

Standard C library’s <time.h> header file: struct tm

53

Anatomy of a timer system

54

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

...
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

Anatomy of a timer system

55

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

Timer requirements

56

• Wall clock date & time
• Date: Month, Day, Year
• Time: HH:MM:SS:mmm
• Provided by a “real-time clock” or RTC

• Alarm: do something (call code) at certain time later
• Later could be a delay from now (e.g., Δt)
• Later could be actual time (e.g., today at 3pm)

• Stopwatch: measure (elapsed) time of an event
• Instead of pushbuttons, could be function calls or
• Hardware signals outside the processor

Timer requirements

57

• Wall clock
• datetime_t getDateTime()

• Alarm
• void alarm(callback, delta)
• void alarm(callback, datetime_t)

• Stopwatch: measure (elapsed) time of an event
• t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
• GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address

Wall Clock from a Real-Time Clock (RTC)

58

• Often a separate module
• Built with registers for

• Years, Months, Days
• Hours, Mins, Seconds

• Alarms: hour, min, day
• Accessed via

• Memory-mapped I/O
• Serial bus (I2C, SPI)

Timer requirements

59

• Wall clock
• datetime_t getDateTime()

• Alarm
• void alarm(callback, delta)
• void alarm(callback, datetime_t)

• Stopwatch: measure (elapsed) time of an event
• t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
• GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address

Anatomy of a timer system

60

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

Oscillators – RC

61

Oscillators – Crystal

62

Anatomy of a timer system

63

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

Timer requirements

64

• Wall clock
• datetime_t getDateTime()

• Alarm
• void alarm(callback, delta)
• void alarm(callback, datetime_t)

• Stopwatch: measure (elapsed) time of an event
• t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
• GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address

There are two basic activities one wants timers for:
• Measure how long something takes

– “Capture”
• Have something happen once or every X time

period
– “Compare”

Timer applications

 Fan
− Say you have a fan spinning and you want to know

how fast it is spinning. One way to do that is to

have it throw an interrupt every time it completes a

rotation.
 Right idea, but might take a while to process the

interrupt, heavily loaded system might see slower fan than

actually exists.
 This could be bad.

− Solution? Have the timer note immediately how

long it took and then generate the interrupt. Also

restart timer immediately.
 Same issue would exist in a car when measuring speed

of a wheel turning (for speedometer or anti-lock

brakes).

Example # 1: Capture

• Driving a DC motor via PWM.
– Motors turn at a speed determined by the

voltage applied.
• Doing this in analog can be hard.

– Need to get analog out of our processor
– Need to amplify signal in a linear way

(op-amp?)
» Generally prefer just switching

between “Max” and“Off” quickly.
– Average is good enough.
– Now don’t need linear amplifier—just

“on” and “off”. (transistor)
– Need a signal with a certain duty cycle and

frequency.
• That is % of time high.

Example # 2: Compare

• Assume 1 MHz CLK
• Design “high-level” circuit to

– Generate 1.52 ms pulse
– Every 6 ms
– Repeat

• How would we generalize this?

Servo motor control: class exercise

Outline

• Context and review
• Interrupts

− General characteristics
− Our Cortex M-3

• Timers
− General characteristics
− SmartFusion board

69

 SysTick Timer
− ARM requires every Cortex-M3 to have this

timer.
− 24-bit count-down timer to generate system

ticks.
− Has own interrupt.
− Clocked by FCLK with optional programmable

divider.
 See Actel SmartFusion MSS User Guide for

register definitions.

Timers on the SmartFusion

htp://www.actel.com/documents/SmartFusion_MSS_UG.pdf

Timers on the SmartFusion Timers on the SmartFusion

• System imer
– “The System Timer consists of two programmable

32-bit decremening counters that generate

interrupts to the ARM® Cortex™-M3 and FPGA

fabric. Each counter has two possible modes of

operaion: Periodic mode or One-Shot mode. The

two imers can be concatenated to create a 64-bit

imer with Periodic and One-Shot modes. The two

32-bit imers are idenical”

htp://www.actel.com/documents/SmartFusion_MSS_UG.pdf

Timers on the SmartFusion Anatomy of a timer system

74

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

• Can we use more timers than exist in hardware?
• Yes. Use hardware timers as a foundation for

software-controlled virtual timers.
• Maybe we have 10 events we might want to

generate.
• Make a list of them and set the timer to go off

for the first one.
• Repeat.

Virtual timers

• Only works for “compare” imer uses.
• Will result in slower ISR response ime.

– May not care, could just schedule sooner.

Problems?

