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Context and review

 Interrupts
 Polling
 Event-driven vs. procedural programming
 Interrupt vectors / jump tables
 Timing diagrams
 Prioritization and masking

 Timers
 Architecture and source of complexity
 Pulse width modulation
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NVIC

 Set/inspect interrupt enable, pending, and 

active status bits.
 Set/inspect priority level.
 Only highest four bits considered by our 

processor.
 See pages 34-42 of lecture 7 for additional 

details.
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Bonus and timer tie-in: higher-level APIs atop interrupts

 Interrupt vector / jump table used to indicate ISR for 

each interrupt.
 Callbacks

 Similar concept at a higher level.
 Pass a function pointer (a callback) into another function.
 We saw this with the sort routine.
 But now the function can simply register the callback 

somewhere for later execution.
 E.g., pass in a function to execute at a particular time.

int execute_when(void (*callback)(int when), int when);
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Sharing data with ISR

 What if an ISR/program shared data structure requires 

multiple instructions to modify?
 E.g., deleting an element from a linked list.
 Program

Get pointer to relevant list element.

[What if interrupt happens here?]

Read and write data in list element.
 ISR

Delete list element.
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Sharing data with ISR

 Solution: make atomic operations atomic.
 New program version

Disable interrupts.

Just those that care about inconsistent state.

Very briefly.

Get pointer to relevant list element.

[What if interrupt happens here?]

Read and write data in list element.

Enable interrupts.
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Debugging ISRs

 Set a breakpoint at interrupt handler.
 Is it ever called?

 Examine NVIC registers.
 Are they set correctly?

 Use oscilloscope to look at interrupt signal.
 Default interrupt vector table traps.

 To infinite loop.
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Midterm exam conflicts

• 8-9:30pm on 22 February in 2505 GGBL.
• Deadline for pointing out a hard conflict and 

requesting an alternative time is today.
• Email me (dickrp@umich.edu).
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Midterm exam preparation

• Material up to and including 9 February lecture 

may be tested.
• New material presented on or after 14 February 

will not be tested.
• HW 5 is largely a review assignment.
• 7 Feb: Will post practice midterms based on prior 

exams but adjusted to match material this 

semester.
• Not graded. You are welcome to discuss in 

office/lab hours.
• 14 Feb: Will post solutions to those practice 

midterms.
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Review sessions

• Several review sessions will be held in the week 

before the exam.
• Times and locations will be posted to the website 

by 7 February.
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Project

• Read the project handout if you haven't done so.
 Click “project” in website menu.

• 31 January: topic proposals assigned
 Two terse (<= 1 page) topic proposals due 3 

February at 8pm.
 Will provide format.

• 4 February: I post all proposals.
• 7 February: project team formation meeting.
• 13-15 February: 15-minute project proposals to 

Matthew and me.

14

Topic talk

• 1 February: topic talk time slot signup.
 15-minute educational talk on topic of interest.
 Can be on topic relevant to project.

• 23 February: finalize talk title.
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Timers

• Why they matter?
• Avoid pitfalls of loop-based delays.

 Waste power.
 Prevent other useful work from being done.

• Why they are complex?
 Span HW/SW boundary.

17

iPhone Clock App
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• World Clock – display 

real time in multiple 

time zones

 
• Alarm – alarm at certain 

(later) time(s). 

 
• Stopwatch – measure 

elapsed time of an 

event.

 
• Timer – count down time 

and notify when count 

becomes zero.



Motor and light Control
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• Servo motors – PWM 

signal provides control 

signal.

 

 
• DC motors – PWM signals 

control power delivery.

 

 
• RGB LEDs – PWM signals 

allow dimming through 

current-mode control.

Methods from Android SystemClock
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Standard C library’s <time.h> header file
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Standard C library’s <time.h> header file: struct tm
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Anatomy of a timer system
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module timer(clr, ena, clk, alrm); 
  input clr, ena, clk;
  output alrm;
  reg alrm;
  reg [3:0] count;
 
  always @(posedge clk) begin
    alrm <= 0;
    if (clr) count <= 0;
    else count <= count+1;
  end
endmodule
 

...
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
  timer_handler_t handler;
  uint32_t time;
  uint8_t mode;
  timer_t* next_timer;
} timer_t;

timer_tick:
  ldr r0, count;
  add r0, r0, #1
  ... 

Anatomy of a timer system
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module timer(clr, ena, clk, alrm); 
  input clr, ena, clk;
  output alrm;
  reg alrm;
  reg [3:0] count;
 
  always @(posedge clk) begin
    alrm <= 0;
    if (clr) count <= 0;
    else count <= count+1;
  end
endmodule
 

 
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
  timer_handler_t handler;
  uint32_t time;
  uint8_t mode;
  timer_t* next_timer;
} timer_t;

timer_tick:
  ldr r0, count;
  add r0, r0, #1
  ... 



Timer requirements
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• Wall clock date & time
• Date: Month, Day, Year
• Time: HH:MM:SS:mmm
• Provided by a “real-time clock” or RTC

• Alarm: do something (call code) at certain time later
• Later could be a delay from now (e.g., Δt)
• Later could be actual time (e.g., today at 3pm)

• Stopwatch: measure (elapsed) time of an event
• Instead of pushbuttons, could be function calls or
• Hardware signals outside the processor

Timer requirements
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• Wall clock
• datetime_t getDateTime()

• Alarm
• void alarm(callback, delta)
• void alarm(callback, datetime_t)

• Stopwatch: measure (elapsed) time of an event
• t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
• GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address

Wall Clock from a Real-Time Clock (RTC)
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• Often a separate module
• Built with registers for

• Years, Months, Days
• Hours, Mins, Seconds

• Alarms: hour, min, day
• Accessed via

• Memory-mapped I/O
• Serial bus (I2C, SPI)

Timer requirements
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• Wall clock
• datetime_t getDateTime()

• Alarm
• void alarm(callback, delta)
• void alarm(callback, datetime_t)

• Stopwatch: measure (elapsed) time of an event
• t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
• GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address

Anatomy of a timer system

29

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software
 

Hardware

Applications
 

Operating System

Internal
 

External

module timer(clr, ena, clk, alrm); 
  input clr, ena, clk;
  output alrm;
  reg alrm;
  reg [3:0] count;
 
  always @(posedge clk) begin
    alrm <= 0;
    if (clr) count <= 0;
    else count <= count+1;
  end
endmodule
 

 
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
  timer_handler_t handler;
  uint32_t time;
  uint8_t mode;
  timer_t* next_timer;
} timer_t;

timer_tick:
  ldr r0, count;
  add r0, r0, #1
  ... 

Oscillators – RC 
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Oscillators – Crystal 
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Anatomy of a timer system
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module timer(clr, ena, clk, alrm); 
  input clr, ena, clk;
  output alrm;
  reg alrm;
  reg [3:0] count;
 
  always @(posedge clk) begin
    alrm <= 0;
    if (clr) count <= 0;
    else count <= count+1;
  end
endmodule
 

 
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
  timer_handler_t handler;
  uint32_t time;
  uint8_t mode;
  timer_t* next_timer;
} timer_t;

timer_tick:
  ldr r0, count;
  add r0, r0, #1
  ... 

Timer requirements

33

• Wall clock
• datetime_t getDateTime()

• Alarm
• void alarm(callback, delta)
• void alarm(callback, datetime_t)

• Stopwatch: measure (elapsed) time of an event
• t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
• GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address

There are two basic activities one wants timers for:
• Measure how long something takes

– “Capture”
• Have something happen once or every X time 

period
– “Compare”

Timer applications

 Fan
− Say you have a fan spinning and you want to know 

how fast it is spinning.  One way to do that is to 

have it throw an interrupt every time it completes a 

rotation. 
 Right idea, but might take a while to process the 

interrupt, heavily loaded system might see slower fan than 

actually exists.
 This could be bad.

− Solution?  Have the timer note immediately how 

long it took and then generate the interrupt. Also 

restart timer immediately.
 Same issue would exist in a car when measuring speed 

of a wheel turning (for speedometer or anti-lock 

brakes).

Example # 1: Capture

• Driving a DC motor via PWM.
– Motors turn at a speed determined by the 

voltage applied.
• Doing this in analog can be hard.

– Need to get analog out of our processor
– Need to amplify signal in a linear way 

(op-amp?)
» Generally prefer just switching 

between “Max” and“Off” quickly.
– Average is good enough.
– Now don’t need linear amplifier—just 

“on” and “off”. (transistor)
– Need a signal with a certain duty cycle and 

frequency.
• That is % of time high.

Example # 2: Compare



• Assume 1 MHz CLK
• Design “high-level” circuit to

– Generate 1.52 ms pulse
– Every 6 ms
– Repeat

• How would we generalize this?

Servo motor control: class exercise Outline

• Context and review
• Midterm exam
• Project and topic talks
• Timers

− General characteristics
− SmartFusion board

• Hazards
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 SysTick Timer
− ARM requires every Cortex-M3 to have this 

timer.
− 24-bit count-down timer to generate system 

ticks.
− Has own interrupt.
− Clocked by FCLK with optional programmable 

divider.
 See Actel SmartFusion MSS User Guide for 

register definitions.

Timers on the SmartFusion

htp://www.actel.com/documents/SmartFusion_MSS_UG.pdf

Timers on the SmartFusion

Timers on the SmartFusion

• System imer
– “The System Timer consists of two programmable  

32-bit decremening  counters that generate 

interrupts to the ARM® Cortex™-M3 and FPGA 

fabric. Each  counter has two possible modes of 

operaion: Periodic mode or One-Shot mode.  The 

two imers can be concatenated to create a 64-bit 

imer with Periodic and One-Shot modes. The two 

32-bit imers are idenical”

htp://www.actel.com/documents/SmartFusion_MSS_UG.pdf

Timers on the SmartFusion



Anatomy of a timer system
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module timer(clr, ena, clk, alrm); 
  input clr, ena, clk;
  output alrm;
  reg alrm;
  reg [3:0] count;
 
  always @(posedge clk) begin
    alrm <= 0;
    if (clr) count <= 0;
    else count <= count+1;
  end
endmodule
 

 
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
  timer_handler_t handler;
  uint32_t time;
  uint8_t mode;
  timer_t* next_timer;
} timer_t;

timer_tick:
  ldr r0, count;
  add r0, r0, #1
  ... 

• Can we use more timers than exist in hardware?
• Yes. Use hardware timers as a foundation for 

software-controlled virtual timers.
• Maybe we have 10 events we might want to 

generate.
• Make a list of them and set the timer to go off 

for the first one.  
• Repeat.

Virtual timers

• Only works for “compare” imer uses.
• Will result in slower ISR response ime.

– May not care, could just schedule sooner.

Problems?

• Shared user-space/ISR data structure.
– Inserion happens at least some of the ime in user 

code.
– Deleion happens in ISR.

• We need criical secion (disable interrupt)
• How do we deal with our modulo counter?

– That is, the imer wraps around.
– Why is that an issue?

• What funcionality would be nice?
– Generally one-shot vs. repeaing events
– Might be other things desired though

• What if two events are to happen at the same 
ime?
– Pick an order, do both. 

Implementation Issues

• What data structure?
– Data needs be sorted.

• Insering one thing at a ime.

– We always pop from one end.
– But we add in sorted order.

Implementation Issues (continued) Data structures
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 Race between variable transitions.
 May, but not must, produce a glitch.
 Glitch
 Static glitch: transient pulse of incorrect 

value when output should be stable.
 Dynamic glitch: transient pulse of incorrect 

value when output should be changing.
 Consider a minimal implementation of

 f(a, b, c) = a'b'c + a'bc + abc + abc'

Hazards

 Consider a minimal implementation of
 f(a, b, c) = a'b'c + a'bc + abc + abc'

 f(a, b, c) = a'c + ab
 What if b=1, c=1?

Hazards

 How to eliminate
 Limit logic to two levels
 Cover all transitions

 f(a, b, c) = a'c + ab + bc
 What if b=1, c=1?

Hazards

Effect of hazards

 Hazards can often be ignored in 
synchronous systems.

 Only sampling on clock edges.
 Make clocks slow enough to 

permit glitching to finish before 
next edge.

 Still wastes power.
 Causes major problems in 

asynchronous systems.
− Different design style 

required. 

When hazards need special attention

 Asynchronous resets
− If you’ve got a flip-flop that has an asynchronous 

reset (or “preset”) you need to be sure the input 

can’t glitch.
 Unless the number of times reset doesn't 

matter.
− Can use a flip-flop on the input.

 You probably needed a synchronous reset in 

this case.

− Clocks
 Hazards in logic driving clocks can produce 

spurious clock edges.

Traditionally, CLR is used

to indicate async reset.  “R”

or “reset” for sync. reset.

If clk is high and cond 

glitches, you get extra 

edges!



Simple design rules

 Don't use asynchronous resets unless 

you understand the implications fully.
 Don't drive a clock with logic 

containing hazards.
 Hazard-free guarantee.

 Only two levels.
 Cover transitions.

 Literal or complement, not both.

X

X

Glitches

 People use asynchronous 
resets and clock gating!

− Think carefully
 Our “simple” bus used
 Combinational logic for the 

clock
− Works because REQ goes 

low only after everything 
else has stopped 
switching.

− Might also be safe even if 
this weren't true.

− Need detailed analysis of 
implementation to know.

Setup and hold time

 If active clock edge and data 

change at same time.
 Then data latched is unclear.
 Often worse for registers than 

single flip-flops.
− Inconsistent state.

 Use temporal “guard band” 

around clock edge
 Data must be stable there.
 Setup time.
 Hold time.

So what happens if we violate set-up or hold time?

 Often just get one of the two values.
− And that often is just fine.

 Consider getting a button press from the user.
 If the button gets pressed at the same time as the 

clock edge, we might see the button now or next 
clock.

− Either is generally fine when it comes to human 
input.

− But bad things could happen.
 The flip-flop’s output might not settle to a “0” or a 

“1” quickly.
 That could cause later devices to mess up.
 More likely, if that input is going to two places, one 

might see a “0” the other a “1”

Example

 A common thing to do is reset a state machine 

using a button.
− User can “reset” the system.

 Because the button transition could violate set-

up or hold time, some state bits of the state 

machine might come out of reset at different 

times.

Example

 Dealing with inputs not synchronized to our local clock 

is a problem.
− Likely to violate setup or hold time.

 That could lead to things breaking.
 So we need a clock synchronization circuit.

− First flip-flop might have problems.
− Second should be fine.
− Sometimes use a third if 
− Really paranoid

 Safety-critical system for example. 
− Or explicitly design a fundamental mode AFSM.

 I get yelled at for teaching this to undergrads but tell me 

if you are curious. Could do an “optional” talk in second 

half of course.

Figure from http://www.eeweb.com/electronics-quiz/solving-metastability-design-issues, we use the same thing to deal with external inputs too! 



Design rules

3. Use a clock synchronization circuit 

when changing clock domains or 

using unclocked inputs!


/* Synchonization of Asynchronous switch input */

always@(posedge clk)
begin
 sw0_pulse[0] <= sw_port[0];
 sw0_pulse[1] <= sw0_pulse[0];
 sw0_pulse[2] <= sw0_pulse[1];
end
 always @(posedge clk) SSELr <= {SSELr[1:0], SSEL};


