
1

EECS 373
Design of Microprocessor-Based Systems

Robert Dick

University of Michigan

Lecture 8: Project Overview, Timers, and Hazards

31 January 2017

Slides inherited from Mark Brehob.

Outline

• Context and review
• Midterm exam
• Project
• Timers

− General characteristics
− SmartFusion board

• Hazards

2

Context and review

 Interrupts
 Polling
 Event-driven vs. procedural programming
 Interrupt vectors / jump tables
 Timing diagrams
 Prioritization and masking

 Timers
 Architecture and source of complexity
 Pulse width modulation

3

NVIC

 Set/inspect interrupt enable, pending, and

active status bits.
 Set/inspect priority level.
 Only highest four bits considered by our

processor.
 See pages 34-42 of lecture 7 for additional

details.

4

Bonus and timer tie-in: higher-level APIs atop interrupts

 Interrupt vector / jump table used to indicate ISR for

each interrupt.
 Callbacks

 Similar concept at a higher level.
 Pass a function pointer (a callback) into another function.
 We saw this with the sort routine.
 But now the function can simply register the callback

somewhere for later execution.
 E.g., pass in a function to execute at a particular time.

int execute_when(void (*callback)(int when), int when);

5

Sharing data with ISR

 What if an ISR/program shared data structure requires

multiple instructions to modify?
 E.g., deleting an element from a linked list.
 Program

Get pointer to relevant list element.

[What if interrupt happens here?]

Read and write data in list element.
 ISR

Delete list element.

6

Sharing data with ISR

 Solution: make atomic operations atomic.
 New program version

Disable interrupts.

Just those that care about inconsistent state.

Very briefly.

Get pointer to relevant list element.

[What if interrupt happens here?]

Read and write data in list element.

Enable interrupts.

7

Debugging ISRs

 Set a breakpoint at interrupt handler.
 Is it ever called?

 Examine NVIC registers.
 Are they set correctly?

 Use oscilloscope to look at interrupt signal.
 Default interrupt vector table traps.

 To infinite loop.

8

Outline

• Context and review
• Midterm exam
• Project and topic talks
• Timers

− General characteristics
− SmartFusion board

• Hazards

9

Midterm exam conflicts

• 8-9:30pm on 22 February in 2505 GGBL.
• Deadline for pointing out a hard conflict and

requesting an alternative time is today.
• Email me (dickrp@umich.edu).

10

Midterm exam preparation

• Material up to and including 9 February lecture

may be tested.
• New material presented on or after 14 February

will not be tested.
• HW 5 is largely a review assignment.
• 7 Feb: Will post practice midterms based on prior

exams but adjusted to match material this

semester.
• Not graded. You are welcome to discuss in

office/lab hours.
• 14 Feb: Will post solutions to those practice

midterms.

11

Review sessions

• Several review sessions will be held in the week

before the exam.
• Times and locations will be posted to the website

by 7 February.

12

Outline

• Context and review
• Midterm exam
• Project and topic talks
• Timers

− General characteristics
− SmartFusion board

• Hazards

13

Project

• Read the project handout if you haven't done so.
 Click “project” in website menu.

• 31 January: topic proposals assigned
 Two terse (<= 1 page) topic proposals due 3

February at 8pm.
 Will provide format.

• 4 February: I post all proposals.
• 7 February: project team formation meeting.
• 13-15 February: 15-minute project proposals to

Matthew and me.

14

Topic talk

• 1 February: topic talk time slot signup.
 15-minute educational talk on topic of interest.
 Can be on topic relevant to project.

• 23 February: finalize talk title.

15

Outline

• Context and review
• Midterm exam
• Project and topic talks
• Timers

− General characteristics
− SmartFusion board

• Hazards

16

Timers

• Why they matter?
• Avoid pitfalls of loop-based delays.

 Waste power.
 Prevent other useful work from being done.

• Why they are complex?
 Span HW/SW boundary.

17

iPhone Clock App

18

• World Clock – display

real time in multiple

time zones

• Alarm – alarm at certain

(later) time(s).

• Stopwatch – measure

elapsed time of an

event.

• Timer – count down time

and notify when count

becomes zero.

Motor and light Control

19

• Servo motors – PWM

signal provides control

signal.

• DC motors – PWM signals

control power delivery.

• RGB LEDs – PWM signals

allow dimming through

current-mode control.

Methods from Android SystemClock

20

Standard C library’s <time.h> header file

21

Standard C library’s <time.h> header file: struct tm

22

Anatomy of a timer system

23

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

...
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

Anatomy of a timer system

24

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

Timer requirements

25

• Wall clock date & time
• Date: Month, Day, Year
• Time: HH:MM:SS:mmm
• Provided by a “real-time clock” or RTC

• Alarm: do something (call code) at certain time later
• Later could be a delay from now (e.g., Δt)
• Later could be actual time (e.g., today at 3pm)

• Stopwatch: measure (elapsed) time of an event
• Instead of pushbuttons, could be function calls or
• Hardware signals outside the processor

Timer requirements

26

• Wall clock
• datetime_t getDateTime()

• Alarm
• void alarm(callback, delta)
• void alarm(callback, datetime_t)

• Stopwatch: measure (elapsed) time of an event
• t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
• GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address

Wall Clock from a Real-Time Clock (RTC)

27

• Often a separate module
• Built with registers for

• Years, Months, Days
• Hours, Mins, Seconds

• Alarms: hour, min, day
• Accessed via

• Memory-mapped I/O
• Serial bus (I2C, SPI)

Timer requirements

28

• Wall clock
• datetime_t getDateTime()

• Alarm
• void alarm(callback, delta)
• void alarm(callback, datetime_t)

• Stopwatch: measure (elapsed) time of an event
• t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
• GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address

Anatomy of a timer system

29

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

Oscillators – RC

30

Oscillators – Crystal

31

Anatomy of a timer system

32

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

Timer requirements

33

• Wall clock
• datetime_t getDateTime()

• Alarm
• void alarm(callback, delta)
• void alarm(callback, datetime_t)

• Stopwatch: measure (elapsed) time of an event
• t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
• GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address

There are two basic activities one wants timers for:
• Measure how long something takes

– “Capture”
• Have something happen once or every X time

period
– “Compare”

Timer applications

 Fan
− Say you have a fan spinning and you want to know

how fast it is spinning. One way to do that is to

have it throw an interrupt every time it completes a

rotation.
 Right idea, but might take a while to process the

interrupt, heavily loaded system might see slower fan than

actually exists.
 This could be bad.

− Solution? Have the timer note immediately how

long it took and then generate the interrupt. Also

restart timer immediately.
 Same issue would exist in a car when measuring speed

of a wheel turning (for speedometer or anti-lock

brakes).

Example # 1: Capture

• Driving a DC motor via PWM.
– Motors turn at a speed determined by the

voltage applied.
• Doing this in analog can be hard.

– Need to get analog out of our processor
– Need to amplify signal in a linear way

(op-amp?)
» Generally prefer just switching

between “Max” and“Off” quickly.
– Average is good enough.
– Now don’t need linear amplifier—just

“on” and “off”. (transistor)
– Need a signal with a certain duty cycle and

frequency.
• That is % of time high.

Example # 2: Compare

• Assume 1 MHz CLK
• Design “high-level” circuit to

– Generate 1.52 ms pulse
– Every 6 ms
– Repeat

• How would we generalize this?

Servo motor control: class exercise Outline

• Context and review
• Midterm exam
• Project and topic talks
• Timers

− General characteristics
− SmartFusion board

• Hazards

38

 SysTick Timer
− ARM requires every Cortex-M3 to have this

timer.
− 24-bit count-down timer to generate system

ticks.
− Has own interrupt.
− Clocked by FCLK with optional programmable

divider.
 See Actel SmartFusion MSS User Guide for

register definitions.

Timers on the SmartFusion

htp://www.actel.com/documents/SmartFusion_MSS_UG.pdf

Timers on the SmartFusion

Timers on the SmartFusion

• System imer
– “The System Timer consists of two programmable

32-bit decremening counters that generate

interrupts to the ARM® Cortex™-M3 and FPGA

fabric. Each counter has two possible modes of

operaion: Periodic mode or One-Shot mode. The

two imers can be concatenated to create a 64-bit

imer with Periodic and One-Shot modes. The two

32-bit imers are idenical”

htp://www.actel.com/documents/SmartFusion_MSS_UG.pdf

Timers on the SmartFusion

Anatomy of a timer system

43

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software

Hardware

Applications

Operating System

Internal

External

module timer(clr, ena, clk, alrm);
 input clr, ena, clk;
 output alrm;
 reg alrm;
 reg [3:0] count;

 always @(posedge clk) begin
 alrm <= 0;
 if (clr) count <= 0;
 else count <= count+1;
 end
endmodule

timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
 timer_handler_t handler;
 uint32_t time;
 uint8_t mode;
 timer_t* next_timer;
} timer_t;

timer_tick:
 ldr r0, count;
 add r0, r0, #1
 ...

• Can we use more timers than exist in hardware?
• Yes. Use hardware timers as a foundation for

software-controlled virtual timers.
• Maybe we have 10 events we might want to

generate.
• Make a list of them and set the timer to go off

for the first one.
• Repeat.

Virtual timers

• Only works for “compare” imer uses.
• Will result in slower ISR response ime.

– May not care, could just schedule sooner.

Problems?

• Shared user-space/ISR data structure.
– Inserion happens at least some of the ime in user

code.
– Deleion happens in ISR.

• We need criical secion (disable interrupt)
• How do we deal with our modulo counter?

– That is, the imer wraps around.
– Why is that an issue?

• What funcionality would be nice?
– Generally one-shot vs. repeaing events
– Might be other things desired though

• What if two events are to happen at the same
ime?
– Pick an order, do both.

Implementation Issues

• What data structure?
– Data needs be sorted.

• Insering one thing at a ime.

– We always pop from one end.
– But we add in sorted order.

Implementation Issues (continued) Data structures

Outline

• Context and review
• Midterm exam
• Project and topic talks
• Timers

− General characteristics
− SmartFusion board

• Hazards

49

 Race between variable transitions.
 May, but not must, produce a glitch.
 Glitch
 Static glitch: transient pulse of incorrect

value when output should be stable.
 Dynamic glitch: transient pulse of incorrect

value when output should be changing.
 Consider a minimal implementation of

 f(a, b, c) = a'b'c + a'bc + abc + abc'

Hazards

 Consider a minimal implementation of
 f(a, b, c) = a'b'c + a'bc + abc + abc'

 f(a, b, c) = a'c + ab
 What if b=1, c=1?

Hazards

 How to eliminate
 Limit logic to two levels
 Cover all transitions

 f(a, b, c) = a'c + ab + bc
 What if b=1, c=1?

Hazards

Effect of hazards

 Hazards can often be ignored in
synchronous systems.

 Only sampling on clock edges.
 Make clocks slow enough to

permit glitching to finish before
next edge.

 Still wastes power.
 Causes major problems in

asynchronous systems.
− Different design style

required.

When hazards need special attention

 Asynchronous resets
− If you’ve got a flip-flop that has an asynchronous

reset (or “preset”) you need to be sure the input

can’t glitch.
 Unless the number of times reset doesn't

matter.
− Can use a flip-flop on the input.

 You probably needed a synchronous reset in

this case.

− Clocks
 Hazards in logic driving clocks can produce

spurious clock edges.

Traditionally, CLR is used

to indicate async reset. “R”

or “reset” for sync. reset.

If clk is high and cond

glitches, you get extra

edges!

Simple design rules

 Don't use asynchronous resets unless

you understand the implications fully.
 Don't drive a clock with logic

containing hazards.
 Hazard-free guarantee.

 Only two levels.
 Cover transitions.

 Literal or complement, not both.

X

X

Glitches

 People use asynchronous
resets and clock gating!

− Think carefully
 Our “simple” bus used
 Combinational logic for the

clock
− Works because REQ goes

low only after everything
else has stopped
switching.

− Might also be safe even if
this weren't true.

− Need detailed analysis of
implementation to know.

Setup and hold time

 If active clock edge and data

change at same time.
 Then data latched is unclear.
 Often worse for registers than

single flip-flops.
− Inconsistent state.

 Use temporal “guard band”

around clock edge
 Data must be stable there.
 Setup time.
 Hold time.

So what happens if we violate set-up or hold time?

 Often just get one of the two values.
− And that often is just fine.

 Consider getting a button press from the user.
 If the button gets pressed at the same time as the

clock edge, we might see the button now or next
clock.

− Either is generally fine when it comes to human
input.

− But bad things could happen.
 The flip-flop’s output might not settle to a “0” or a

“1” quickly.
 That could cause later devices to mess up.
 More likely, if that input is going to two places, one

might see a “0” the other a “1”

Example

 A common thing to do is reset a state machine

using a button.
− User can “reset” the system.

 Because the button transition could violate set-

up or hold time, some state bits of the state

machine might come out of reset at different

times.

Example

 Dealing with inputs not synchronized to our local clock

is a problem.
− Likely to violate setup or hold time.

 That could lead to things breaking.
 So we need a clock synchronization circuit.

− First flip-flop might have problems.
− Second should be fine.
− Sometimes use a third if
− Really paranoid

 Safety-critical system for example.
− Or explicitly design a fundamental mode AFSM.

 I get yelled at for teaching this to undergrads but tell me

if you are curious. Could do an “optional” talk in second

half of course.

Figure from http://www.eeweb.com/electronics-quiz/solving-metastability-design-issues, we use the same thing to deal with external inputs too!

Design rules

3. Use a clock synchronization circuit

when changing clock domains or

using unclocked inputs!

/* Synchonization of Asynchronous switch input */

always@(posedge clk)
begin
 sw0_pulse[0] <= sw_port[0];
 sw0_pulse[1] <= sw0_pulse[0];
 sw0_pulse[2] <= sw0_pulse[1];
end
 always @(posedge clk) SSELr <= {SSELr[1:0], SSEL};

