v e | Outline
Vi
Design of Microprocessor-Based Systems * Context and review
* Midterm exam
* Project
* Timers
Robert Dick — General gharacterlstlcs
University of Michigan — SmartFusion board
® Hazards
Lecture 8: Project Overview, Timers, and Hazards
31 January 2017
Slides inherited from Mark Brehob.
Context and review NVIC
* Lntlfl-‘."upts * Set/inspect interrupt enable, pending, and
* Polling . R
* Event-driven vs. procedural programming aCtW_e status b.ltS..
* Interrupt vectors / jump tables * Set/inspect priority level.
* Timing diagrams . * Only highest four bits considered by our
" _FI’_ll.']n?:rt;zatlon and masking processor.
« Architecture and source of complexity * See pages 34-42 of lecture 7 for additional
* Pulse width modulation details.
Bonus and timer tie-in: higher-level APIs atop interrupts Sharing data with ISR
* Interrupt vector / jump table used to indicate ISR for * What if an ISR/program shared data structure requires
each interrupt. multiple instructions to modify?
* Callbacks * E.g., deleting an element from a linked list.
* Similar concept at a higher level. * Program
* Pass a function pointer (a callback) into another function. Get pointer to relevant list element.
* We saw this with the sort routine. [What if interrupt happens here?]
* But now the function can simply register the callback Read and write data in list element.
somewhere for later execution. * ISR
* E.g., pass in a function to execute at a particular time. Delete list element.

int execute_when(void (*callback)(int when), int when);

Sharing data with ISR Debugging ISRs

* Solution: make atomic operations atomic. * Set a breakpoint at interrupt handler.
* New program version * Is it ever called?
Disable interrupts. * Examine NVIC registers.
Just those that care about inconsistent state. * Are they set correctly?
Very briefly. * Use oscilloscope to look at interrupt signal.
Get pointer to relevant list element. * Default interrupt vector table traps.
[What if interrupt happens here?] * To infinite loop.

Read and write data in list element.
Enable interrupts.

Outline Midterm exam conflicts

® 8-9:30pm on 22 February in 2505 GGBL.

* Contextandreview ¢ Deadline for pointing out a hard conflict and
* Midterm exam requesting an alternative time is today.
* Project and topic talks ¢ Email me (dickrp@umich.edu).
* Timers
— General characteristics
— SmartFusion board
* Hazards
Midterm exam preparation Review sessions
® Material up to and including 9 February lecture ® Several review sessions will be held in the week
may be tested. before the exam.
* New material presented on or after 14 February * Times and locations will be posted to the website
will not be tested. by 7 February.

e HW 5 is largely a review assignment.

® 7 Feb: Will post practice midterms based on prior
exams but adjusted to match material this
semester.

* Not graded. You are welcome to discuss in
office/lab hours.

* 14 Feb: Will post solutions to those practice
midterms.

Outline

Contextand-review
Midterm-exam

Project and topic talks
Timers

— General characteristics
— SmartFusion board

* Hazards

Topic talk

* 1 February: topic talk time slot signup.
* 15-minute educational talk on topic of interest.
* Can be on topic relevant to project.

e 23 February: finalize talk title.

Timers

* Why they matter?
* Avoid pitfalls of loop-based delays.

* Waste power.

* Prevent other useful work from being done.
* Why they are complex?

* Span HW/SW boundary.

Project

® Read the project handout if you haven't done so.
* Click “project” in website menu.

* 31 January: topic proposals assigned
* Two terse (<= 1 page) topic proposals due 3

February at 8pm.

* Will provide format.

® 4 February: | post all proposals.
® 7 February: project team formation meeting.
® 13-15 February: 15-minute project proposals to

Matthew and me.

Outline

Midterm-exam

Timers

— General characteristics
— SmartFusion board

* Hazards

iPhone Clock App

wil. ATET T 10:36 PM < O 100% ==

New York

St. Louis

Los Angeles

Dot @ 9:36Fm

World Clock

Contextandreview

Proiect and topic_tal

| micHican |
Vil

World Clock - display
real time in multiple
time zones

Alarm - alarm at certain
(later) time(s).

Stopwatch - measure
elapsed time of an
event.

Timer - count down time
and notify when count
becomes zero.

Motor and light Control

¢ Servo motors - PWM
signal provides control

Methods from Android SystemClock

Signal staticlong currentThreadTimeMillis ()
: Returns milliseconds running in the current thread.
staticlong elapsedRealtime ()
Returns milliseconds since boot, including time spent in sleep.
¢ DC motors - PWM SlgnalS staticlong elapsedRealtimeNanos()

control power delivery.

Returns nanoseconds since boot, including time spent in sleep.

staticboolean setCurrentTimeMillis (long millis)

Setsthe current wall time, in milliseconds.

_ . static void sleep (long ms)
* RGB LEDS PWM S]gnals Waits a given number of milliseconds (of uptimeMillis) before returning
allow d]mm]ng thrOUgh staticlong uptimeMillis ()

current-mode control.

Returns milliseconds since boot, not counting time spent in deep sleep.

L V¥
L ichican |
Vil

Standard C library’s <time.h> header file Standard C library’s <time.h> header file: struct tm

Library Functions

Fallowing are the functions defined in the header time.h:

S.N. Function & Description

1 char “asctime(const struct tm “timeptr)
Returns a pointer o a string which represents the day and time of the structure timeptr.

clock_t clocki{void)
2 Returns the processor clock time used since the beginning of an implementation-defined era

{normally the beginning of the prograrm). struct tm {

int tm sec; /* seconds, range 0 to 59 */

3 char “ctime(const time_1 *timer) int tm min; /* minutes, range 0 to 5% =/
Retums a string representing the localtime based on the argument timer, int tm_hour; /* hours, range 0 to 23 *]

— = int tm mday; /* day of the menth, range 1 to 31 =/

i dnubledumlm_e{;\me ttime1, time_t time2) X int tm_mon; /* month, range 0 to 11 w/
Retumns the difference of seconds between time1 and time2 (timet-time2). int tm_year; /* The number of years since 1900 *y

siruct tm *gmtimelconst time_t *timer) int tm wday; /* day 9{ the week, range 0 to 6 */

5 The value of timer is broken up into the structure tm and expressed in Coordinated Universal int tm yday; /* day in the year, range 0 to 365 */
Time (UTC) also known as Greenwich Mean Time (GMT) int tm isdst; /* daylight saving time wL

6 struct tm “localtime(const time_t “timer)
Tne value of timer is broken up into the structure tm and expressed in the local time zone.
time_t mktime(struct tm *timeptr)

7 Converts the structure pointed 10 by timeptr into a time_ t value according to the local lime
zone.
size t stritime{char "str, size_1 maxsize, const char *format, const struct tm “timeptr)

8 Formats the time represented in the structure limeptr according 1o the formatting rules
defined in format and siored into str.

g time_1 time(time_t “timer)
Calculates the current calender time and encodes it into time_t format.

Anatomy of a timer system

Application Software

Anatomy of a timer system

Application Software

timer_t timerX: timer_t timerX:
initTimer () ; initTimer() ;
startTimerOneShot (timerX, 1024); startTimerOneShot (timerX, 1024);

stopTimer (timerX) ;

Applications
Operating System

Applications stopTimer (timerX) ;

typedef struct timer (

| Timer Abstractions and Virtualization |

timer_tick:
ldr £0, count;

| Low-Level Timer Subsystem Device Drivers |
Y

add r0, r0, #1
Software B
R/W R/W RAW-
Hardware
] VAl AN
-| Compare [¢—7=— Counter =~ Capture module timer(clr, ena, clk, alrm);
t cir, ena, clk
catpat alim; |
reg alra;
reg [3:0] count;
alem <= 0;
if (clr) count <= 0;
else count <= countsl;
end
nClock Drivery, endnodule
Internal B EF
External r N
< i AR ‘
170 1/0

Timer requirements Timer requirements =
Vi Vi
« Wall clock date & time e Wall clock
» Date: Month, Day, Year » datetime_t getDateTime()
e Time: HH:MM:SS:mmm
 Provided by a “real-time clock” or RTC
» Alarm: do something (call code) at certain time later
 Later could be a delay from now (e.g., At)
» Later could be actual time (e.g., today at 3pm)
« Stopwatch: measure (elapsed) time of an event
* Instead of pushbuttons, could be function calls or
» Hardware signals outside the processor
Wall Clock from a Real-Time Clock (RTC) Smr Timer requirements i
- Vi Vil
I
o — — IL — « Often a separate module
:5“‘ H il I « Built with registers for
! — ¢ Years, Months, Days
. . e Alarm
: * Hours, Mins, Seconds .
: - void alarm(callback, delta)
A » Alarms: hour, min, day . .
8 . » void alarm(callback, datetime_t)
; » Accessed via
: ¢ Memory-mapped 1/0
¢ Serial bus (12C, SPI)
son 3%] - seconos
s INTERFACE C‘Eﬁ? »:::r::
Anatomy of a timer system et Oscillators - RC TorEE
. ViR Vi

IZ Square Wave

Oscillator

e B == L -G
Xtal/Osc ‘
o

1/0

Oscillators - Crystal e Anatomy of a timer system et
Vi ViR

Rf

>
(s

Rs Hardware lmw lmw lmw
0—| D HL Compare I / I Counter I / I Capture module timer(clr, ena, clk, alrm);
e I input ez

, ena, clk;
Prescaler

reg almm;
reg [3:0] count;

always @(posedge clk) begin
alm

Figuye 1: Fundamental Mode Isolated
Pierce-Gate Oscillator

Internal

Timer requirements oo Timer applications i
-V Vil
There are two basic activities one wants timers for:
* Measure how long something takes
- “Capture”
* Have something happen once or every X time
period
» Stopwatch: measure (elapsed) time of an event — “Compare”
e t1 = now(); ... ; t2 = now(); dt = difftime(t2, t1);
e GPIO_INT_ISR:
LDR R1, [RO, #0] % RO=timer address
Example # 1: Capture otz Example # 2: Compare otz
Vi Vi
* Fan o * Driving a DC motor via PWM.
- Say you have a fan spinning and you want to know - Motors turn at a speed determined by the
how fast it is spinning. One way to do that is to voltage applied.
have it throw an interrupt every time it completes a * Doing this in analog can be hard.
rotation. —Need to get analog out of our processor
* Right idea, but might take a while to process the —Need to amplify signal in a linear way
interrupt, heavily loaded system might see slower fan than (op-amp?)

actually exists.
* This could be bad.

- Solution? Have the timer note immediately how
long it took and then generate the interrupt. Also

» Generally prefer just switching
between “Max” and“Off” quickly.
— Average is good enough.
—Now don’t need linear amplifier—just

restart timer immediately. “on” and “off”. (transistor)
* Same issue would exist in a car when measuring speed — Need a signal with a certain duty cycle and
of a wheel turning (for speedometer or anti-lock frequency.

brakes). * That is % of time high.

Servo motor control: class exercise

* Assume 1 MHz CLK

* Design “high-level” circuit to
— Generate 1.52 ms pulse
— Every 6 ms
— Repeat

* How would we generalize this?

Timers on the SmartFusion et
Vi
* SysTick Timer
- ARM requires every Cortex-M3 to have this
timer.
- 24-bit count-down timer to generate system
ticks.
- Has own interrupt.
- Clocked by FCLK with optional programmable
divider.
* See Actel SmartFusion MSS User Guide for
register definitions.
Timers on the SmartFusion otz
Vi

» Watchdog Timer
- 32-bit down counter
- Either reset system or NMI Interrupt if it reaches 0!

| APB Bus |

[Cwoocioap]

WDOGSTATUS _| WDOGVALUE
WDOGENABLE WDOGREFRESH_]

RCOSCCLK RCOSCRESETN
SLEEPING ——— WDQG
HALTED ——»| AEEREoNmeoTte wnosnm;ounm

[wooGmvRr_] WDOGCONTROL
[_woocris]
wnocms

APB Bus

PRO

Outline

Contextand-review
Midterm-exam

Proi I . Y
Timers

e L.
— SmartFusion board

* Hazards

Timers on the SmartFusion

« Real-Time Counter (RTC) System
- Clocked from 32 kHz low-power crystal
- Automatic switching to battery power if necessary
- Can put rest of the SmartFusion to standby or sleep to reduce power
- 40-bit match register clocked by 32.768 kHz divided by 128 (256 Hz)

FPGA Fabric

1583V Level shift Circuitry

From
— Core Flash VCC33AP,
Bits

RTC VR Logic 1.5V Voltage

rystal Osclllator Regulator

VR

CortexM3
Interrupt System

ape_0
MATCH

Flashgits [#[FPOAVRON

VRINITSTATE
|e—{EnnBLE
LPXIN PTEM

RTCPSMMATC 1
LN VRON =] VRPU
PuN
veave

VRPSM

[l cLkouT—{RTcak

| I

| micrican |
[AL T

http://www.actel.com/documents/SmartFusion_MSS_UG.pdf

Timers on the SmartFusion

¢ System timer

— “The System Timer consists of two programmable
32-bit decrementing counters that generate
interrupts to the ARM® Cortex™-M3 and FPGA
fabric. Each counter has two possible modes of
operation: Periodic mode or One-Shot mode. The
two timers can be concatenated to create a 64-bit
timer with Periodic and One-Shot modes. The two
32-bit timers are identical”

http://www.actel.com/documents/SmartFusion_MSS_UG.pdf

Toggle Control
switch

| micHican |
Vi

Anatomy of a timer system e Virtual timers T
Vi Vil
* Can we use more timers than exist in hardware?
OperatingSystem] T T T T T et s e * Yes. Use hardware timers as a foundation for
Timer Abstractions and Virtualization :E:"EE?:::Z;ET - software-controlled virtual timers.
) iy T * Maybe we have 10 events we might want to

generate.

* Make a list of them and set the timer to go off
for the first one.

* Repeat.

Problems? Implementation Issues
* Only works for “compare” timer uses. ® Shared user-space/ISR data structure.
* Will result in slower ISR response time. — Insertion happens at least some of the time in user
— May not care, could just schedule sooner. code.

— Deletion happens in ISR.
* We need critical section (disable interrupt)

* How do we deal with our modulo counter?
— That is, the timer wraps around.
— Why is that an issue?
* What functionality would be nice?
— Generally one-shot vs. repeating events
— Might be other things desired though
What if two events are to happen at the same
time?
— Pick an order, do both.

Implementation Issues (continued) Data structures

| micHican |
AL

typedef struct timer

* What data structure?

timer handler t handler;

— Data needs be sorted. uinesz.t tines
® Inserting one thing at a time. timer t* next_timer;
} timer_t;

— We always pop from one end.
— But we add in sorted order.

timer t* current timer;

void initTimer () {
setupHardwareTimer () ;
initLinkedList () ;
current timer = NULL;

}

error_t startTimerOneShot(timer handler t handler, uint32_t t) {
// add handler to link list and sort it by time
// if this is first element, start hardware timer

}

error_t startTimerContinuous (timer handler t handler, uint32_t dt) {
/7 add handler to linked 1
// if this is first element, start hardware timer

for (nowtdt), set mode to continuous

}

error_t stopTimer (timer h
// find element for h

ndler_t handler) {
ndler and remove it from list

Outline Hazards)
Vil

* Race between variable transitions.

* Contextandreview ;
. Mid . qu, but not must, produce a glitch.
* Project-and-topic-tatks * Glitch
o TFirers * Static glitch: transient pulse of incorrect
— General-characteristies value when output should be stable.
- SmartFusion-beard * Dynamic glitch: transient pulse of incorrect
* Hazards value when output should be changing.
* Consider a minimal implementation of
*f(a, b, c) =ab'c + abc + abc + abc’
Hazards it Hazards i
Vi Vi
* Consider a minimal implementation of * How to eliminate
*f(a, b, ¢) = ab’c + albc + abc + abc’ * Limit logic to two levels
* Cover all transitions
bc
bc
o [o
: o [P
0 [0 |d]D ;
o [0 [T
* f(a, b, c)=ac+ab
* What if b=1, c=1? * f(a, b, c) =a'c+ab + bc
* What if b=1, c=1?
Effect of hazards otz When hazards need special attention izt
Vi Vi
* Hazards can often be ignored in * Asynchronous resets -5 |2
synchronou; systems. — - If you’ve got a flip-flop that has an asynchronous S
* Only sampling on clock edges. — reset (or “preset”) you need to be sure the input _R| la
* Make clocks slow enough to | can’t glitch.
permit glitching to finish before [| * Unless the number of times reset doesn't da
next edge. [1] matter.

* Still wastes power.
* Causes major problems in
asynchronous systems.

- Can use a flip-flop on the input.
* You probably needed a synchronous reset in

: f this case. i
- Different design style Clocks _n :D—IEI— out
required.] — -
q £ * Hazards in logic driving clocks can produce clk
spurious clock edges. ll_cl‘l\ “ high :ulld‘cm‘lld
glitches, you get extra
1D/ EX/

edges!

EX Mem

Simple design rules otz
Vi
PRE
* Don't use asynchronous resets unless
you understand the implications fully. 9
R Q

* Don't drive a clock with logic
containing hazards. = n
* Hazard-free guarantee.
* Only two levels.
* Cover transitions.

* Literal or complement, not both. in out
cond
clk
Setup and hold time it

Vil
Setup, Hold Time
* If active clock edge and data (

Ly,

change at same time. _ = S
* Then data latched is unclear. | —— |
* Often worse for registers than 7))
single flip-flops. PUmEE L 4 | PO

- Inconsistent state.
* Use temporal “guard band”

around clock edge
* Data must be stable there.
* Setup time.

* Hold time.
Example otz
Vi

* A common thing to do is reset a state machine
using a button.

- User can “reset” the system.

* Because the button transition could violate set-
up or hold time, some state bits of the state
machine might come out of reset at different
times.

Glitches

| ¥ |
[

* People use asynchronous
resets and clock gating!
- Think carefully
* Our “simple” bus used
* Combinational logic for the
clock
- Works because REQ goes
low only after everything
else has stopped
switching.
- Might also be safe even if
this weren't true.
- Need detailed analysis of
implementation to know. pararm

So what happens if we violate set-up or hold time? In.‘n%%
* Often just get one of the two values.
- And that often is just fine.
* Consider getting a button press from the user.
 If the button gets pressed at the same time as the
ctocllz edge, we might see the button now or next
clock.
- Either is generally fine when it comes to human
input.
- But bad things could happen.
* The flip-flop’s output might not settle to a “0” or a
“1” quickly.
* That could cause later devices to mess up.
* More likely, if that input is going to two places, one
might see a “0” the other a “1”
Example

* Dealing with inputs not synchronized to our local clock
is a problem.
- Likely to violate setup or hold time.
¢ That could lead to things breaking.
* So we need a clock synchronization circuit.
- First flip-flop might have problems.
- Second should be fine.

{ \
- Sometimes use a third if ... i i ili |
- Really paranoid AR Lo i

¢ Safety-critical system for example. ~ “vmmmmm----
- Or explicitly design a fundamental mode AFSM.
* | get yelled at for teaching this to undergrads but tell me
if you are curious. Could do an “optional” talk in second
half of course.

Synchronization Register Chain

Figure from http://www.ceweb.com/electronics-quiz/solving y-desig ., we use the same thing to deal with external inputs too!

Design rules

Use a clock synchronization circuit
when changing clock domains or
using unclocked inputs!

Synchronization Register Chain

Data_in
/* ization of

switch input */
Clockl

always@ (posedge clk)

begin ;

sw0_pulse[0] <= sw_port[0]; Semmme o -

sw0_pulse[1] <= sw0_pulse[0];

sw0_pulse[2] <= sw0_pulse[1];
end

s
’
1
1
|
1
1
lock
Clockz —-
~

e e

always @ (posedge clk) SSELr <= {SSELr[1:0], SSEL};

