
 1

ABI Register and Stack Usage Convention

Register Usage

• Use dedicated registers for their intended purpose only.
• Use R3 – R10 for passing values and R3 and R4 for returning values across

function calls beginning with R3.
• If you need a temporary register, use one of the volatile registers. Begin with R12

and work your way down.
• Volatile registers are not preserved across function calls. If your function uses

volatile registers, their contents are not necessarily preserved if you call an ABI
compliant function.

• If you need a variable that is preserved across function calls, use one of the
nonvolatile registers. Begin with R31 and work your way down.

• Nonvolatile registers are preserved across function calls. You can call an ABI
compliant function with the confidence that nonvolatile register contents will be
preserved on return.

• If you use a nonvolatile register in a function, you are obligated to preserve its
contents.

• Most of the condition register fields are volatile. Be careful to preserve the
condition register if a conditional test and corresponding conditional branch are
separated by a function call.

Register Type Use
R0 Volatile Link register
R1 Dedicated Stack pointer
R2 Dedicated Read-only small data area anchor
R3 – R4 Volatile Parameter Passing, return values
R5 – R10 Volatile Parameter passing
R11 – R12 Volatile General use
R13 Dedicated Read-write small data area anchor
R14 – R31 Non volatile
F0 – F31 Floating point is not available on the MPC823
CR2 – CR4 Nonvolatile Condition register
CR fields except CR2-CR4 Volatile Condition register

 2

Stack Usage

• Use R0 for the link register.
• Use mflr to read the link register.
• Use mtlr to write the link register.
• The link register is always stored in the second to the last location of the previous

stack frame.
• Use R1 for the stack pointer.
• The stack pointer to the previous frame (back chain) is stored in the last location

of the current stack frame.
• Use stwu to store the stack pointer on the stack, update the stack pointer and

allocate stack space. For example, consider stwu r1, -12 (r1) assuming r1 contains
the current stack pointer.

1. The value of r1 is stored in the location specified by r1 –12 bytes. Thus,
the stack pointer is stored on the bottom of the stack.

2. Because of the – 12 offset, 12 bytes or 3 words are allocated in the frame.
3. The location r1 – 12 bytes is stored in r1. Thus, r1 now points to the

bottom of the current stack frame.

 Stack allocation for stwu r1, -12(r1) where r1 = 0x0011000.

Address in stack contents
0x001100c
0x0011008 Available for general use
0x0011004 Reserved for link register
0x0011000 00x001100c

 3

Example
 The following C program is expressed in assembly illustrating ABI compliant
stack usage and function calls.

C code

int dox();
int doy();

void main() {
int x;
 x = 0;
 while(1) x = do1(x) + 1;
}
int do1(int x) {
 x = x + 1;
 x = do2()+ x;
 return(x);
}
int do2() {
 abi compliant function that returns a number between 0 and 100;
 return(int x);
}

Assembler
 #the following is the main()

 .data #define data section (location 0x11000)
 .align 2
 .skip 4*100 #allocate 100 words of space for stack
stack: .skip 4 #set stack label to top of stack

 .text #define text or program
 #section (location 0x10000)
 .align 2
 .global _start

_start: lis r1,stack@h # load stack pointer to r1
 ori r1,r1,stack@l
 stwu r1, -0x8(r1) #store stack pointer to bottom of frame
 # allocate stack space

 # set stack pointer r1
 # to point to bottom of frame

 addi r31,r0,0 # set r31 to zero
loop: ori r3,r31,0 # put r31 into r3
 bl do1 # branch to do1
 # argument in r3
 # return address in link register
 addi r31,r3,1 # increment returned value
 b loop # loop and continue

1

 4

 # the following is the d01 function

do1: mflr r0 # get LR
 stw r0,4(r1) # save LR in previous frame
 stwu r1,-0xC(r1) # stack management as above

allocate space for: stack pointer,
#link register and one non volatile reg

 stw r31,8(r1) # save nonvolatile register r31

 addi r3,r3,1 # increment
 ori r31,r3,0 # save argument r3 into r31
 bl do2 # branch to do2
 # do2 is a abi compliant func
 add r3,r31,r3 # add return value with argument

 lwz r5,8(r1) # restore nonvolatile register r31
 lwz r0,0x10(r1) # get LR from previous frame
 mtlr r0 # restore LR
 addi r1,r1,0xC # restore SP
 blr # return to call point with argument
 # in r3

 # the following is the do2 function

 do2:
 abi compliant function that returns a number between 0 and 100.
 The details of register usage are not known, but usage is ABI

compliant.

 Position 3 is after stack allocation.

 return(r3)

2

3

 5

Stack contents at position 1

address contents
0x0011068 unknown
0x0011064 contents of r1 0x0011068

Stack contents at position 2

address contents
0x0011068 LR to main just after do1 call
0x0011064 0x0011068
0x0011060 r31
0x001105c unknown
0x0011058 contents of r1 0x0011064

Stack contents at position 3

address contents
0x0011068 LR to main just after do2 call
0x0011064 0x0011068
0x0011060 r31
0x001105c unknown
0x0011058 0x0011064
0x0011054
0x0011050
0x001104c
0x0011048

Depends on frame size 0x0011058

Frame 1

Frame 1

Frame 1

Frame 2

Frame 2

Frame 3

