
EECS 373 Fall 1998 Exam 1 Name:_____________________________________

Page 1 of 6

READ AND FOLLOW THESE INSTRUCTIONS.
• Do not begin until you are told to do so.
• Write your name legibly on every page.
• You have 50 minutes; budget your time. The questions are not of equal weight; do not spend too

much time on a question that is not worth many points.
• Read through all of the questions before starting to work.
• If you run out of space, continue working on the back of the same sheet. Your exams may be taken

apart so that the questions can be graded separately.
• This exam is open book, open notes. You may use any reference material you brought with you. You

may not share reference materials with other students.

Honor Code statement: I have neither given nor received aid on this exam.

Signature: _________________________________

Question Points Score

1 15

2 40

3 45

Total 100

EECS 373 Fall 1998 Exam 1 Name:_____________________________________

Page 2 of 6

1. (15 pts) Consider the following assembly-language program fragment:

.data
array: .byte 0x12, 0x34, 0x89, 0xAB

.text
_start: li r1, array # load the address ‘array’ into r1

lwa r3, 0(r1) # load a signed word into r3
lwz r4, 0(r1) # load an unsigned word into r4
lha r5, 2(r1) # load a signed halfword into r5
lhz r6, 2(r1) # load an unsigned halfword into r6
lba r7, 2(r1) # load a signed byte into r7
lbz r8, 2(r1) # load an unsigned byte into r8

a. (9 pts) One or more of the instructions in the program are invalid or do not do what the comment
indicates. In the space below, write each incorrect instruction and give a valid instruction or
instruction sequence that would do what the comment indicates.

b. (6 pts) After applying your fixes and executing the instructions (from _start to the end), what
would be the full 32-bit contents of the following registers (in hexadecimal)?

li r1, array should be lis r1, array@h
ori r1, r1, array@l

(can’t load 32-bit immediate
in one instruction)

lwa r3, 0(r1) should be lwz r3, 0(r1) (no lwa instruction exists)

lba r7, 2(r1) should be lbz r7, 2(r1)
extsb r7, r7

(no lba instruction exists)

Register Contents

R3 0x123489AB

R4 0x123489AB

R5 0xFFFF89AB

R6 0x000089AB

R7 0xFFFFFF89

R8 0x00000089

EECS 373 Fall 1998 Exam 1 Name:_____________________________________

Page 3 of 6

2. (40 pts) Use the following code fragment and memory dump to answer the following questions. Read
all of the questions before you begin.

 li r14,0x1FFC
 li r15,4
 lwzux r1,r14,r15
 lwzux r2,r14,r15
 lwzux r3,r14,r15

lwzux r4,r14,r15
 li r5,0

loop1: cmp r5,r1
 beq done1
 lbzx r6,r5,r2
 lbzx r7,r5,r3
 add r8,r6,r7
 stbx r8,r5,r4
 addi r5,r5,1
 b loop1

done1: li r5,0

loop2: cmp r5,r1
 beq done2
 li r6,0
 subf r7,r5,r1
 addi r7,r7,-1

loop3: cmp r6,r7
 beq done3
 addi r8,r6,1
 lbzx r9,r6,r4
 lbzx r10,r8,r4
 cmp r9,r10
 ble skip

stbx r10,r6,r4
 stbx r9,r8,r4
skip: addi r6,r6,1
 b loop3

done3: addi r5,r5,1
 b loop2

done2: addi r4,r4,-4
 lwzu r29,4(r4)
 lwzu r30,4(r4)
 lwzu r31,4(r4)

Mem Address +0 +1 +2 +3

1FFC 00 01 02 03

2000 00 00 00 0C

2004 00 00 20 10

2008 00 00 20 20

200C 00 00 20 30

2010 0B 0A 09 08

2014 07 06 05 04

2018 03 02 01 00

201C FF FF FF FF

2020 10 10 10 10

2024 10 10 10 10

2028 10 10 10 10

202C FF FF FF FF

2030 FF FF FF FF

2034 FF FF FF FF

2038 FF FF FF FF

EECS 373 Fall 1998 Exam 1 Name:_____________________________________

Page 4 of 6

a. (6 pts) Step through the first six instructions. For each instruction, indicate the new values of the
registers that are modified by that instruction.

b. (4 pts) What are the values in the following registers after the first iteration of the loop at loop1?

c. (10 pts) What are the values in memory locations 2030-203B after loop1 has finished?

d. (5 pts) What are the values in the following registers after the first iteration of loop3?

e. (15 pts) What are the values in the following registers after the code fragment finishes running?

Instruction R1 R2 R3 R4 R14 R15

li r14,0x1FFC 0x1FFC

li r15,4 0x4

lwzux r1,r14,r15 0xC 0x2000

lwzux r2,r14,r15 0x2010 0x2004

lwzux r3,r14,r15 0x2020 0x2008

lwzux r4,r14,r15 0x2030 0x200C

R5 R6 R7 R8

0x1 0xB 0x10 0x1B

Memory Address +0 +1 +2 +3

2030 0x1B 0x1A 0x19 0x18

2034 0x17 0x16 0x15 0x14

2038 0x13 0x12 0x11 0x10

R6 R7 R8 R9 R10

0x01 0x0B 0x01 0x1B 0x1A

R4 R29 R30 R31

0x2038 0x10111213 0x14151617 0x18191A1B

EECS 373 Fall 1998 Exam 1 Name:_____________________________________

Page 5 of 6

3. (45 pts) Here is an excerpt from the Unix man page for the C library function memcpy:

SYNOPSIS

void *memcpy(void *dest, const void *src, size_t n);

DESCRIPTION
The memcpy() function copies n bytes from memory area src
to memory area dest. The memory areas may not overlap.

RETURN VALUE
The memcpy() function returns a pointer to dest.

a. (20 pts) Write a simple PowerPC assembly-language version of the memcpy function. Use the ABI
conventions discussed in class. Focus on correctness rather than performance.

memcpy: mr r7, r3 # save dest pointer for return value
loop: cmpwi r5, 0 # n == 0 ??

beq done # yes... all done
lbz r6, 0(r4) # load byte from *src
stb r6, 0(r3) # store byte to *dest
addi r4, r4, 1 # src++
addi r3, r3, 1 # dest++
addi r5, r5, -1 # n--
b loop

done: mr r3, r7 # restore dest pointer for return value
blr # return

Notes:
• Since memcpy doesn’t call any other functions (it’s a leaf function) there’s no need to allocate a stack

frame.
• Putting the compare at the top of the loop makes memcpy act correctly when called with n = 0.
• There are a number of optimizations that could be used, such as using update-mode addressing to

eliminate the pointer increments, or using “addi. r5, r5, -1” to eliminate the cmpwi. None of
these were necessary for full credit.

EECS 373 Fall 1998 Exam 1 Name:_____________________________________

Page 6 of 6

b. (25 pts) Copying data using word accesses (loads and stores) obviously takes fewer instructions than
copying the same amount of data with byte accesses. However, using word accesses is likely to be
faster than using byte accesses only if all of the accesses are aligned. Assume that you have two
functions:

1. bytecpy, which is identical to your program from part (a).

2. wordcpy, which has the same arguments and return value as bytecpy, except that:
a. it copies data using word loads and stores
b. it interprets its third parameter as a word count rather than a byte count (that is, it copies ‘n’

words rather than ‘n’ bytes).

Write another complete assembly-language version of the memcpy function. This version should not
copy any data itself; instead, it should check its parameters and call wordcpy if appropriate and
bytecpy otherwise.

It is only appropriate to call wordcpy if both the src and dest pointers are word-aligned and the byte count
n is a multiple of four (that is, you’re not copying a fractional number of words). Otherwise, call bytecpy.
• Since this function is not a leaf function, you must allocate a stack frame and save the link register on

the stack.
• The pointer word-alignment checks and the byte count check are really the same operation: check if

the value is a multiple of four. There are several ways to do this. Many people divided the value by
four, multiplied the result by four, and compared that result to the original value. This works, but is
extremely inefficient: both multiply and divide are relatively time-consuming instructions. It is much
more efficient to test whether the low-order two bits are 00. You can do this in a single instruction
with an andi. or an rlwinm..

memcpy: stwu r1, -8(r1) # set up stack frame
mflr r0 # save LR
stw r0, 4(r1)

andi. r0, r3, 3 # is dest word-aligned? (result in r0 is unused)
bne do_bytecpy # no... call bytecpy
andi. r0, r4, 3 # is src word-aligned?
bne do_bytecpy # no... call bytecpy
andi. r0, r5, 3 # is n a multiple of 4?
bne do_bytecpy # no... call bytecpy
srawi r5, r5, 2 # change byte count to word count (divide by 4)
bl wordcpy
b done

do_bytecpy:
bl bytecpy

done: lwz r0, 4(r1)
mtlr r0
addi r1, r1, 8
blr

