
EECS 373 F99 Notes 10-1 © 1998, 1999 Steven K. Reinhardt

Bus Topics

You should be familiar by now with the basic operation of the
MPC823 bus. In this section, we will discuss alternative bus
structures and advanced bus operation.

• Synchronization styles

• Arbitration: supporting multiple masters

• Burst transfers

• Pipelining

• Address/data multiplexing

• Split transactions

Synchronization: How do master & slave agree on when data
is valid, or when transaction is over?

1. Synchronous (“fully” synchronous)

2. Semi-synchronous

3. Asynchronous

Synchronous Bus

• Everything synchronized to bus clock, every transaction
takes one clock cycle

• All master outputs valid on rising edge of CLK, stay valid
through falling edge of CLK; slave output (for read) valid
by falling edge of CLK

• Setup & hold times part of bus specification

• Advantage:

• Disadvantages:

CLK

ADDR

DATA

RD/WR

ENABLE

A1

D1

A2

D2?? ?? ??

?? ?? ??

?? ?? ??

EECS 373 F99 Notes 10-2 © 1998, 1999 Steven K. Reinhardt

Semisynchronous Bus

• Everything synchronized to bus clock, but transactions take
variable number of cycles

• Slave asserts ACK to indicate that data is valid at clock
edge (must be synchronized to clock)

• Control signal edges convey no timing information

• Minimum transaction usually multiple cycles (2 in example,
on MPC823; 4 on 8086)

• Extra clock cycles between start and end (due to late ACK)
are called wait states

Semisync Bus (cont’d)

• Variation: replace ACK with WAIT; assume minimum
transaction time unless device asserts WAIT

• ACK or WAIT can be driven by:

• device itself (if it provides such a thing)

• “wait state generator”: dedicated counter/FSM logic,
delays ENABLE by fixed number of cycles to generate
ACK (based on device response time)

CLK

ADDR

DATA

RD/WR

ENABLE

A1

D1

A2

D2?? ?? ??

?? ?? ??

?? ?? ??

ACK

EECS 373 F99 Notes 10-3 © 1998, 1999 Steven K. Reinhardt

Asynchronous Bus

• No clock: all timing based on control signal edges:

• STROBE: master to slave valid signal (slave reads on
falling edge)

• ACK: slave to master valid signal (master reads on
falling edge)

• fully interlocked: no device timing dependencies

1. master asserts STROBE until it sees ACK

2. slave asserts ACK until it sees STROBE deasserted

Asynchronous Bus (cont’d)

• M68000 can be operated in this fashion (slaves can ignore
clock and use control signal edges only)

• key: ACK is asynchronous; no setup time w.r.t. clock

• synchronized internally to CPU

• partially interlocked:

• bus specifies minimum, maximum pulse widths for
STROBE & ACK

• relies on devices to meet spec, breaks if pulses too short
or too long

• PC parallel (printer) interface is like this

• Advantages:

• Disadvantages:

ADDR

DATA

RD/WR

STROBE

A1

D1

A2

D2?? ?? ??

?? ?? ??

?? ?? ??

ACK

EECS 373 F99 Notes 10-4 © 1998, 1999 Steven K. Reinhardt

Bus Arbitration

Who gets to be master next?

MPC823 protocol is typical, see section 13.4.6. Three control
signals are used:

• BR (Bus Request)

• from master to arbiter: I want bus

• one per master: BR0, BR1, etc.

• BG (Bus Grant)

• from arbiter to master: you can have it next

• BG0, BG1, etc.

• BB (Bus Busy)

• shared among masters (open-collector wired-OR)

Arbitration Protocol

Arbiter looks at all BR signals, asserts exactly one BG

• may use priorities or round-robin

To become master:

1. assert BR

2. wait for (BG and not BB)

3. deassert BR, assert BB

4. do transaction

5. deassert BB

EECS 373 F99 Notes 10-5 © 1998, 1999 Steven K. Reinhardt

Bus Arbitration Example

• arbitration overlaps with previous transaction

• still lose one cycle to switch masters

Bus Parking

• “bus parking”: arbiter leaves BG on last master if no BR

• check BG & !BB same cycle as assert BR

• save a cycle (or more) if no switch in masters

• no need to wait on BB if you’re driving it yourself

CLK

A[6:31]

D[0:31]

TS

A0

D0

A1

?? ??

?? ??

TA

BR0

BG0

BR1

BG1

BB

CLK

A[6:31]

D[0:31]

TS

A0

D0

A1

?? ??

??

TA

BR0

BG0

BR1

BG1

BB

EECS 373 F99 Notes 10-6 © 1998, 1999 Steven K. Reinhardt

Advanced Bus Techniques

How to make busses work more efficiently or cheaply:

• Burst transfers

• Pipelining

• Address/data multiplexing

• Split transactions

Burst Transfers

• First cycle of every MPC823 bus transaction transfers
address; minimum transaction is two cycles

• This limits data transfers to one word every other cycle

• We can beat this limit by transferring multiple words in one
transaction using one address cycle:

(Some additional control signals are required, not shown in the
diagram.)

• What fraction of bus cycles can we transfer data on now?

CLK

A[6:31]

D[0:31]

RD/WR

TS

A0

D1 D2?? ??

?? ??

?? ??

TA

D0 D3

EECS 373 F99 Notes 10-7 © 1998, 1999 Steven K. Reinhardt

Burst Transfers (cont’d)

• What addresses are used for additional data words?

• Where do burst requests come from?

• How are burst transfers initiated?

• MPC823 has two primary signals:

• BURST: from master: I want to do burst

• BI: from slave: I can’t do bursts (823 will convert to
regular “single-beat” requests)

• Only 16-byte (4-word) bursts supported, so no need to
indicate specific size

MPC823 Burst Transfer Example

• Slave can hold TA asserted on adjacent cycles (no need to
deassert as in previous example)

• Slave can still insert wait states by not asserting TA

• BDIP: from master: I still expect another word (simplifies
slave control)

CLK

A[6:31]

D[0:31]

RD/WR

TS

A0

D1 D2?? ??

?? ??

?? ??

TA

D0 D3

BURST

BDIP

BI

??

EECS 373 F99 Notes 10-8 © 1998, 1999 Steven K. Reinhardt

Pipelining

Burst transfers let us transfer data on n out of every n+1 cycles.
How can we do better?

• Notice that data bus is not used during address cycle, and
address bus is not really needed during data cycles.

• Overlap address cycle of each transaction with data cycles
of previous transaction.

• This is called transaction pipelining.

• In general, any two phases of a transaction that use a
separate set of physical signals (wires) can be pipelined.

Pipelining (cont’d)

• The MPC823 bus does not support address/data pipelining,
but (like most busses) does pipeline the arbitration phase.

• The P6 (Pentium Pro/Pentium II) bus has five pipeline
stages (arbitration, request (address), error, snoop, and
response/data).

• By the time transaction n is transferring data, transaction
n+3 may be issuing its request.

• minimum transaction length = 9 cycles

• can start a new transaction every 3 cycles

• with burst transfers (4x 64 bits = 32 bytes), can keep
data bus busy 100% of the time

• Disadvantages of pipelining?

CLK

ADDR

DATA

TS

TA

A1 A2

D1.0 D1.1 D1.2 D1.3 D2.0D0.2 D0.3

?? ??

EECS 373 F99 Notes 10-9 © 1998, 1999 Steven K. Reinhardt

Address/Data Multiplexing

• Pipelining takes advantage of the fact that one transaction
does not use both address & data busses at the same time.

• If the goal is to reduce cost (not increase performance), how
might we exploit this fact differently?

Split Transactions

• Back to high performance... what happens on a pipelined
bus when a transaction requires wait states?

• A split-transaction bus splits each transaction into two
largely independent parts, a request (address part) and a
reply (data part for reads). Replies may appear in any order.

• Just as masters arbitrate to initiate a transaction on the
address bus, slaves must now arbitrate to put their reply on
the data bus.

• Advantage:

• Disadvantages:

ADDR

DATA

A1 A2 A3 A4

D1 D2D3 D4??
wait
state

