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Bus Topics

You should be familiar by now with the basic operation of the 
MPC823 bus.  In this section, we will discuss alternative bus 
structures and advanced bus operation.

• Synchronization styles

• Arbitration: supporting multiple masters

• Burst transfers

• Pipelining

• Address/data multiplexing

• Split transactions

Synchronization: How do master & slave agree on when data 
is valid, or when transaction is over?

1. Synchronous (“fully” synchronous)

2. Semi-synchronous

3. Asynchronous

Synchronous Bus

• Everything synchronized to bus clock, every transaction 
takes one clock cycle

• All master outputs valid on rising edge of CLK, stay valid 
through falling edge of CLK; slave output (for read) valid 
by falling edge of CLK

• Setup & hold times part of bus specification

• Advantage:

• Disadvantages:
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Semisynchronous Bus

• Everything synchronized to bus clock, but transactions take 
variable number of cycles

• Slave asserts ACK to indicate that data is valid at clock 
edge (must be synchronized to clock)

• Control signal edges convey no timing information

• Minimum transaction usually multiple cycles (2 in example, 
on MPC823; 4 on 8086)

• Extra clock cycles between start and end (due to late ACK) 
are called wait states

Semisync Bus (cont’d)

• Variation: replace ACK with WAIT; assume minimum 
transaction time unless device asserts WAIT

• ACK or WAIT can be driven by:

• device itself (if it provides such a thing)

• “wait state generator”: dedicated counter/FSM logic, 
delays ENABLE by fixed number of cycles to generate 
ACK (based on device response time)
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Asynchronous Bus

• No clock: all timing based on control signal edges:

• STROBE: master to slave valid signal (slave reads on 
falling edge)

• ACK: slave to master valid signal (master reads on 
falling edge)

• fully interlocked: no device timing dependencies

1. master asserts STROBE until it sees ACK

2. slave asserts ACK until it sees STROBE deasserted

Asynchronous Bus (cont’d)

• M68000 can be operated in this fashion (slaves can ignore 
clock and use control signal edges only)

• key: ACK is asynchronous; no setup time w.r.t. clock

• synchronized internally to CPU

• partially interlocked:

• bus specifies minimum, maximum pulse widths for 
STROBE & ACK

• relies on devices to meet spec, breaks if pulses too short 
or too long

• PC parallel (printer) interface is like this

• Advantages:

• Disadvantages:
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Bus Arbitration

Who gets to be master next?

MPC823 protocol is typical, see section 13.4.6.  Three control 
signals are used:

• BR (Bus Request)

• from master to arbiter: I want bus

• one per master: BR0, BR1, etc.

• BG (Bus Grant)

• from arbiter to master: you can have it next

• BG0, BG1, etc.

• BB (Bus Busy)

• shared among masters (open-collector wired-OR)

Arbitration Protocol

Arbiter looks at all BR signals, asserts exactly one BG

• may use priorities or round-robin

To become master:

1. assert BR

2. wait for (BG and not BB)

3. deassert BR, assert BB

4. do transaction

5. deassert BB
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Bus Arbitration Example

• arbitration overlaps with previous transaction

• still lose one cycle to switch masters

Bus Parking

• “bus parking”: arbiter leaves BG on last master if no BR

• check BG & !BB same cycle as assert BR

• save a cycle (or more) if no switch in masters

• no need to wait on BB if you’re driving it yourself
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Advanced Bus Techniques

How to make busses work more efficiently or cheaply:

• Burst transfers

• Pipelining

• Address/data multiplexing

• Split transactions

Burst Transfers

• First cycle of every MPC823 bus transaction transfers 
address; minimum transaction is two cycles

• This limits data transfers to one word every other cycle

• We can beat this limit by transferring multiple words in one 
transaction using one address cycle:

(Some additional control signals are required, not shown in the 
diagram.)

• What fraction of bus cycles can we transfer data on now?
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Burst Transfers (cont’d)

• What addresses are used for additional data words?

• Where do burst requests come from?

• How are burst transfers initiated?

• MPC823 has two primary signals:

• BURST: from master: I want to do burst

• BI: from slave: I can’t do bursts (823 will convert to 
regular “single-beat” requests)

• Only 16-byte (4-word) bursts supported, so no need to 
indicate specific size

MPC823 Burst Transfer Example

• Slave can hold TA asserted on adjacent cycles (no need to 
deassert as in previous example)

• Slave can still insert wait states by not asserting TA

• BDIP: from master: I still expect another word (simplifies 
slave control)
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Pipelining

Burst transfers let us transfer data on n out of every n+1 cycles.  
How can we do better?

• Notice that data bus is not used during address cycle, and 
address bus is not really needed during data cycles.

• Overlap address cycle of each transaction with data cycles 
of previous transaction.

• This is called transaction pipelining.

• In general, any two phases of a transaction that use a 
separate set of physical signals (wires) can be pipelined.

Pipelining (cont’d)

• The MPC823 bus does not support address/data pipelining, 
but (like most busses) does pipeline the arbitration phase.

• The P6 (Pentium Pro/Pentium II) bus has five pipeline 
stages (arbitration, request (address), error, snoop, and 
response/data).

• By the time transaction n is transferring data, transaction 
n+3 may be issuing its request.

• minimum transaction length = 9 cycles

• can start a new transaction every 3 cycles

• with burst transfers (4x 64 bits = 32 bytes), can keep 
data bus busy 100% of the time

• Disadvantages of pipelining?
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Address/Data Multiplexing

• Pipelining takes advantage of the fact that one transaction 
does not use both address & data busses at the same time.

• If the goal is to reduce cost (not increase performance), how 
might we exploit this fact differently?

Split Transactions

• Back to high performance... what happens on a pipelined 
bus when a transaction requires wait states?

• A split-transaction bus splits each transaction into two 
largely independent parts, a request (address part) and a 
reply (data part for reads).  Replies may appear in any order. 

• Just as masters arbitrate to initiate a transaction on the 
address bus, slaves must now arbitrate to put their reply on 
the data bus.

• Advantage:

• Disadvantages:
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