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Direct Memory Access (DMA)

Slater Section 5.7
Heath pp. 134-145

DMA refers to the ability of an I/O device to transfer data 
directly to and from memory without going through the CPU.  
Contrast DMA with programmed I/O where the CPU explicitly 
copies data using loads & stores.

(diagram)

Why use DMA?

• Higher transfer bandwidth (one bus op instead of two)

• CPU can do other things during transfer

• faster, more consistent response times (no interrupt or 
polling overhead)

Example: simple disk transfer.  Need to seek to correct cylinder, 
wait for sector to come under head, then must immediately 
transfer data at disk rate else lose bytes.

Example 2: network transfer.  IP packet can be up to 4K bytes.  
Once hardware matches address, must immediately pull data in 
at network rate or lose bytes.

Why not use DMA?

• Hardware more complicated: I/O device must know how to 
become bus master, issue transactions, etc. (all while still 
acting as a slave too)

• Software more complicated (will be evident soon)

• DMA transfer takes bus away from CPU (can limit ability 
of CPU to do other stuff)

• Overhead to set up transfer: need to transfer many bytes to 
overcome
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Basic DMA Example

DMA-capable I/O device will have control registers for:

• starting address of memory buffer

• number of bytes to transfer

• transfer direction (to/from device, read/write on bus)

• device-specific control (e.g., head, cylinder, sector for disk 
access)

DMA transfer algorithm:

1. Program makes I/O request to device

2. CPU does initiation routine (usu. part of device driver)
• use programmed I/O (stores) to set up control regs

• device-specific parameters
• DMA parameters (buffer address/length)
• last write: enable (start) bit

3. I/O device interface does transfer
1. arbitrate for bus mastership
2. put address on bus, assert control signals to do read/

write (looks just like CPU to memory)
• likely use burst transfer if available
• size/type may be programmable via control reg

3. I/O device supplies/consumes data
4. increment address, decrement byte count
5. if byte count > 0, repeat

• usu. release bus to give other devices a chance

6. if byte count == 0, set completion bit in status reg, 
generate interrupt

4. CPU ISR runs completion routine (also part of driver)
• check for errors, retry if necessary
• notify program that transfer is done (e.g., set flag 

variable in memory)
• set up next transfer if appropriate (call initiation routine)

5. Program notices that request is complete

• main program may do other things during steps 2, 3, 4
• on multitasking OS, another program may be run

• on DMA write to I/O device, program must be careful not to 
re-use buffer until it’s notified that the write is complete
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DMA Controllers

In modern systems, devices that need DMA typically have their 
own DMA control engine built in.  In older/low-end systems 
(like the IBM PC), the logic required was/is a significant 
burden, so often a stand-alone, sharable “DMA controller” 
device is provided that lets several simpler I/O devices do DMA 
transfers.

The MPC823 has a couple of DMA controllers that are shared 
among the on-chip peripherals and can also be used by simple 
off-chip peripherals.

Basic idea (single I/O device):

• DMAC has address, direction, count registers

• A pair of request/acknowledge signals go directly to & from 
actual device (diagram)

• Initiation routine initializes both DMAC and device

• For each data transfer on bus:
• Device uses DMA req line to tell DMAC it’s ready for 

transfer
• DMAC arbitrates for bus, puts out address, uses ack line 

to tell device when to put data on/take data from bus
• note that device is doing a read or write under control of 

the DMAC without looking at bus address (which 
actually corresponds to memory location)

• DMAC interrupts CPU when done

Multiple devices:

• DMAC has a pair of req/ack lines for each device (say 4)

• Also has a set of control regs (address, dir, count) for each 
device

• Software can treat like 4 separate DMACs, initialize devices 
& DMAC reg sets independently

• DMAC looks at all req lines, on mult requests chooses one 
device to do transfer (prioritized or round-robin)

Each of these sets of registers, req/ack lines is called a DMA 
“channel”

IBM PC had 4, used 0 for DRAM refresh (timer, highest pri.)
PC/AT extended to 7.

This is called a “one-cycle” or “fly-by” DMA transfer (same as 
device w/built-in).  Stand-alone DMACs are usually capable of 
two-cycle transfers as well, where initialization routine 
specifies two addresses, etc. (for devices too dumb to deal with 
DMA req/ack lines).  Note that this is not much faster than 
programmed I/O (but still may have a faster response time and 
frees the CPU).  This feature can also be used for mem-mem 
copies (but rarely is).
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Advanced DMA

For fast devices, we may be limited by the time it takes the CPU 
to run initiation & completion routines.  Need a way to let 
device do multiple requests back-to-back w/o waiting on CPU.

Simple answer: “buffer chaining”: have multiple sets of regs 
per channel (equiv to mult channels per device), DMA moves 
on to next one immediately after prev. completes

Answer: device is now smart enough to read/write memory, let 
it get parameters from there.  Build array in memory of request 
parameters: address, length, direction, device parameters, etc.

• device control regs now hold starting address, length of 
parameter array (aka descriptor array)

• status flag indicates valid/done

• managed as circular buffer

• may interrupt after each request, or only when out of 
requests/request buffer full etc.


