
EECS 373 F99 Notes 11-1 © 1999 Steven K. Reinhardt

Direct Memory Access (DMA)

Slater Section 5.7
Heath pp. 134-145

DMA refers to the ability of an I/O device to transfer data
directly to and from memory without going through the CPU.
Contrast DMA with programmed I/O where the CPU explicitly
copies data using loads & stores.

(diagram)

Why use DMA?

• Higher transfer bandwidth (one bus op instead of two)

• CPU can do other things during transfer

• faster, more consistent response times (no interrupt or
polling overhead)

Example: simple disk transfer. Need to seek to correct cylinder,
wait for sector to come under head, then must immediately
transfer data at disk rate else lose bytes.

Example 2: network transfer. IP packet can be up to 4K bytes.
Once hardware matches address, must immediately pull data in
at network rate or lose bytes.

Why not use DMA?

• Hardware more complicated: I/O device must know how to
become bus master, issue transactions, etc. (all while still
acting as a slave too)

• Software more complicated (will be evident soon)

• DMA transfer takes bus away from CPU (can limit ability
of CPU to do other stuff)

• Overhead to set up transfer: need to transfer many bytes to
overcome

EECS 373 F99 Notes 11-2 © 1999 Steven K. Reinhardt

Basic DMA Example

DMA-capable I/O device will have control registers for:

• starting address of memory buffer

• number of bytes to transfer

• transfer direction (to/from device, read/write on bus)

• device-specific control (e.g., head, cylinder, sector for disk
access)

DMA transfer algorithm:

1. Program makes I/O request to device

2. CPU does initiation routine (usu. part of device driver)
• use programmed I/O (stores) to set up control regs

• device-specific parameters
• DMA parameters (buffer address/length)
• last write: enable (start) bit

3. I/O device interface does transfer
1. arbitrate for bus mastership
2. put address on bus, assert control signals to do read/

write (looks just like CPU to memory)
• likely use burst transfer if available
• size/type may be programmable via control reg

3. I/O device supplies/consumes data
4. increment address, decrement byte count
5. if byte count > 0, repeat

• usu. release bus to give other devices a chance

6. if byte count == 0, set completion bit in status reg,
generate interrupt

4. CPU ISR runs completion routine (also part of driver)
• check for errors, retry if necessary
• notify program that transfer is done (e.g., set flag

variable in memory)
• set up next transfer if appropriate (call initiation routine)

5. Program notices that request is complete

• main program may do other things during steps 2, 3, 4
• on multitasking OS, another program may be run

• on DMA write to I/O device, program must be careful not to
re-use buffer until it’s notified that the write is complete

EECS 373 F99 Notes 11-3 © 1999 Steven K. Reinhardt

DMA Controllers

In modern systems, devices that need DMA typically have their
own DMA control engine built in. In older/low-end systems
(like the IBM PC), the logic required was/is a significant
burden, so often a stand-alone, sharable “DMA controller”
device is provided that lets several simpler I/O devices do DMA
transfers.

The MPC823 has a couple of DMA controllers that are shared
among the on-chip peripherals and can also be used by simple
off-chip peripherals.

Basic idea (single I/O device):

• DMAC has address, direction, count registers

• A pair of request/acknowledge signals go directly to & from
actual device (diagram)

• Initiation routine initializes both DMAC and device

• For each data transfer on bus:
• Device uses DMA req line to tell DMAC it’s ready for

transfer
• DMAC arbitrates for bus, puts out address, uses ack line

to tell device when to put data on/take data from bus
• note that device is doing a read or write under control of

the DMAC without looking at bus address (which
actually corresponds to memory location)

• DMAC interrupts CPU when done

Multiple devices:

• DMAC has a pair of req/ack lines for each device (say 4)

• Also has a set of control regs (address, dir, count) for each
device

• Software can treat like 4 separate DMACs, initialize devices
& DMAC reg sets independently

• DMAC looks at all req lines, on mult requests chooses one
device to do transfer (prioritized or round-robin)

Each of these sets of registers, req/ack lines is called a DMA
“channel”

IBM PC had 4, used 0 for DRAM refresh (timer, highest pri.)
PC/AT extended to 7.

This is called a “one-cycle” or “fly-by” DMA transfer (same as
device w/built-in). Stand-alone DMACs are usually capable of
two-cycle transfers as well, where initialization routine
specifies two addresses, etc. (for devices too dumb to deal with
DMA req/ack lines). Note that this is not much faster than
programmed I/O (but still may have a faster response time and
frees the CPU). This feature can also be used for mem-mem
copies (but rarely is).

EECS 373 F99 Notes 11-4 © 1999 Steven K. Reinhardt

Advanced DMA

For fast devices, we may be limited by the time it takes the CPU
to run initiation & completion routines. Need a way to let
device do multiple requests back-to-back w/o waiting on CPU.

Simple answer: “buffer chaining”: have multiple sets of regs
per channel (equiv to mult channels per device), DMA moves
on to next one immediately after prev. completes

Answer: device is now smart enough to read/write memory, let
it get parameters from there. Build array in memory of request
parameters: address, length, direction, device parameters, etc.

• device control regs now hold starting address, length of
parameter array (aka descriptor array)

• status flag indicates valid/done

• managed as circular buffer

• may interrupt after each request, or only when out of
requests/request buffer full etc.

