Direct Memory Access (DMA)

Slater Section 5.7
Heath pp. 134-145

DMA refersto the ability of an 1/0O device to transfer data
directly to and from memory without going through the CPU.
Contrast DMA with programmed 1/0O where the CPU explicitly
copies data using loads & stores.

(diagram)

Why use DMA?

» Higher transfer bandwidth (one bus op instead of two)

» CPU can do other things during transfer

» faster, more consistent response times (no interrupt or
polling overhead)

Example: smpledisk transfer. Need to seek to correct cylinder,
wait for sector to come under head, then must immediately
transfer data at disk rate else lose bytes.

Example 2: network transfer. 1P packet can be up to 4K bytes.

Once hardware matches address, must immediately pull datain
at network rate or lose bytes.

EECS 373 F99 Notes

11-1

Why not use DMA?

Hardware more complicated: 1/0 device must know how to
become bus master, issue transactions, etc. (all while till
acting as a lave too)

Software more complicated (will be evident soon)

DMA transfer takes bus away from CPU (can limit ability
of CPU to do other stuff)

Overhead to set up transfer: need to transfer many bytesto
overcome

© 1999 Steven K. Reinhardt

Basic DMA Example 6. if byte count == 0, set completion bit in status reg,
generate interrupt
DMA-capable I/0O device will have control registers for:
4. CPU ISR runs completion routine (also part of driver)

» dtarting address of memory buffer o check for errors, retry if necessary
* notify program that transfer is done (e.g., set flag
» number of bytesto transfer variable in memory)

» setup next transfer if appropriate (call initiation routine)
» transfer direction (to/from device, read/write on bus)
5. Program notices that request is complete
» device-specific control (e.g., head, cylinder, sector for disk

access)
* main program may do other things during steps 2, 3, 4
DMA transfer algorithm: » on multitasking OS, another program may be run
1. Program makes I/O request to device ¢ onDMA writeto I/O device, program must be careful not to

re-use buffer until it’s notified that the write is complete
2. CPU doesinitiation routine (usu. part of device driver)
e use programmed 1/O (stores) to set up control regs
» device-specific parameters
* DMA parameters (buffer address/length)
» last write: enable (start) bit

3. 1/O deviceinterface does transfer
1. arbitrate for bus mastership
2. put address on bus, assert control signalsto do read/
write (looksjust like CPU to memory)
* likely use burst transfer if available
» sizeltype may be programmable via control reg
3. 1/0 device supplies/consumes data
4. increment address, decrement byte count
5. if byte count > 0, repeat
» usu. release bus to give other devices achance

EECS 373 F99 Notes 11-2 © 1999 Steven K. Reinhardt

DMA Controllers

In modern systems, devices that need DMA typically have their
own DMA control engine built in. In older/low-end systems
(likethe IBM PC), the logic required was/is a significant
burden, so often a stand-alone, sharable “DMA controller”
deviceisprovided that lets several smpler 1/0O devicesdo DMA
transfers.

The MPC823 has a couple of DMA controllers that are shared
among the on-chip peripherals and can also be used by simple
off-chip peripherals.

Basicidea (single 1/0O device):
» DMAC has address, direction, count registers

* A pair of request/acknowledge signals go directly to & from
actual device (diagram)

e [|nitiation routine initializes both DMAC and device

» For each datatransfer on bus:

* DeviceusesDMA reg lineto tell DMAC it’' s ready for
transfer

* DMAC arbitratesfor bus, puts out address, uses ack line
to tell device when to put data on/take data from bus

» notethat deviceisdoing aread or write under control of
the DMAC without looking at bus address (which
actually corresponds to memory location)

* DMAC interrupts CPU when done

EECS 373 F99 Notes

11-3

Multiple devices:
» DMAC hasapair of reg/ack lines for each device (say 4)

* Alsohasaset of control regs (address, dir, count) for each
device

» Softwarecantreat like 4 separate DMACS, initialize devices
& DMAC reg sets independently

» DMAC looksat al req lines, on mult requests chooses one
deviceto do transfer (prioritized or round-robin)

Each of these sets of registers, reg/ack linesis called aDMA
“channel”

IBM PC had 4, used O for DRAM refresh (timer, highest pri.)
PC/AT extended to 7.

Thisiscalled a“one-cycle” or “fly-by” DMA transfer (same as
device w/built-in). Stand-alone DMACs are usually capable of
two-cycle transfers as well, where initialization routine
specifies two addresses, etc. (for devices too dumb to deal with
DMA reg/ack lines). Note that thisis not much faster than
programmed 1/O (but still may have afaster response time and
freesthe CPU). Thisfeature can also be used for mem-mem
copies (but rarely is).

© 1999 Steven K. Reinhardt

Advanced DMA

For fast devices, we may be limited by the time it takes the CPU
to runinitiation & completion routines. Need away to let
device do multiple requests back-to-back w/o waiting on CPU.

Simple answer: “buffer chaining”: have multiple sets of regs
per channel (equiv to mult channels per device), DMA moves
on to next one immediately after prev. completes

Answer: device is now smart enough to read/write memory, let
it get parameters from there. Build array in memory of request
parameters. address, length, direction, device parameters, etc.

device control regs now hold starting address, length of
parameter array (aka descriptor array)

status flag indicates valid/done
managed as circular buffer

may interrupt after each request, or only when out of
requests/request buffer full etc.

EECS 373 F99 Notes

11-4

© 1999 Steven K. Reinhardt

