
EECS 373 F99 Notes 12-1 © 1999 Steven K. Reinhardt

Wrap-up

Two different types of microprocessor-based systems:

• general-purpose

• embedded: dedicated to a specific task as part of a larger
product

Those of you who work in this area are much more likely to end
up in the latter field. Contrast ~80 million PCs, few million
servers/mainframes etc. with over 3 billion embedded systems
per year (1995 data).

Categories of embedded systems:

• general: thinly veiled, somewhat specialized computers
• video game console
• WebTV box
• info kiosk

• control: feedback control of physical systems
• vehicle engines
• manufacturing (milling machines, assembly line)
• aircraft flight control

• signal processing: high-bandwidth data stream manipulation
• filtering, analysis, compression, decompression
• radar, modems, medical imaging,

• communications/networking
• telephone switches, network routers, voice-mail systems

Many systems will have incorporate facets of more than one
category.

General-purpose systems:

• performance, cost are primary goals

• often shoot for max performance at given price point

• processor (and often peripheral) choices dictated by
software compatibility

Embedded systems:

• cost is usually paramount (even for NASA)

• must meet functional requirements at minimum cost

• must consider system cost:
• CPU, memory, I/O devices

• integrated microcontroller is usu. best bet if capable
enough

• circuit board size (smaller is cheaper)
• connectors
• power supply (# of batteries, AC adapter req’d?)
• software development cost (non-recurring engineering

(NRE), but may be largest single item)
• life-cycle issues:

• manufacturing cost
• testability
• maintenance: availability of spare parts, ease of

repair/upgrade

EECS 373 F99 Notes 12-2 © 1999 Steven K. Reinhardt

functional requirements very diverse, application-specific

1. performance: application defines “fast enough”, going
significantly faster is a waste of money/power
• often real time: must respond by fixed deadline

• hard real-time: response is useless if late (elevator
control)

• soft real-time: response less useful if late (video dis-
play quality degrades)

• must guarantee response in the face of:
• interrupts (mult priorities)
• other real-time tasks
• DRAM refresh
• cache misses (often don’t use caches)
• worst-case combination of above

• peak, even average performance a non-issue

2. size
• fit in shirt pocket
• fit into left-over space (e.g., digital camera)

3. weight
• portability
• transportation: weight costs money

• cars, airplanes, satellites

4. power
• run on battery for hours, months, years

• larger battery may violate weight constraint
• standby vs. active power (cars)
• cooling constraints on line-powered devices (no fan)

5. safety/reliability

• consequences of failure
• failure modes: fail-stop, random output

• watchdog reset, power cycle, known good state
• electro-mechanical interlocks, backup system
• more extreme: redundancy (SW & HW), voting circuits,

etc.

6. time to market
• better device that’s late may not sell

7. environment
• heat, vibration, shock (drop)
• RF interference (pacemakers vs. microwaves)
• lightning strikes (phone equipment)
• water

Kicker: you won’t be given a (complete) list of requirements up
front; a big part of the job is usually to interpret/anticipate a
customer’s implicit desires to generate useful requirements.

Summary: successful microprocessor-based system design goes
far beyond what you’ve learned here:

• optimization under complex, interdependent constraints

• digital design, software, analog design, electromechanics,
control theory, signal processing

• work on a team with experts from other domains:
manufacturing, marketing, human interfaces, etc.

• communication skills: explain your design, convince your
boss/customer you did a good job, motivate colleagues

EECS 373 F99 Notes 12-3 © 1999 Steven K. Reinhardt

