
© 1998, 1999 Steven K. Reinhardt

le Example

nt that converts an (infinite) upper-
in memory, to lower case:

'a' - 'A'

s, instruction by instruction:

-extends it to 32 bits

is (r3) + 0

e data book:

 MEM((r3) + 0 , 1)
EECS 373 F99 Notes 2-1

PowerPC Architecture and Assembly Language

An instruction set architecture (ISA) specifies the programmer-
visible aspects of a processor, independent of implementation

• number, size of registers

• precise semantics, encoding of instructions

The PowerPC ISA was jointly defined by IBM, Apple, and
Motorola in 1991

• used by Apple for Power Macintosh systems

• based on IBM POWER ISA used in RS/6000 workstations

• MPC823 implements 32-bit version, no floating point

Key “RISC” features:

• fixed-length instruction encoding (32 bits)

• 32 general-purpose registers, 32 bits each

• only load and store instructions access external memory and
devices; all others operate only on registers

Not-so-RISC features:

• several special-purpose registers

• some really strange instructions (like rlwimi)

A Simp

Here’s a little code fragme
case ASCII string, stored

loop: lbz r4, 0(r3)
addi r4, r4, 0x20
stb r4, 0(r3)
addi r3, r3, 1
b loop

Let’s look at what this doe

lbz r4, 0(r3)

loads a byte and zero

the effective address

In the notation of th

r4 ← (24)0 ||

© 1998, 1999 Steven K. Reinhardt

tores in General

start with ‘l’ and ‘st’. The next
cess size, which can be byte, halfword
.

 be computed in two ways:

mmediate index”
et, base + displacement

ctive address is (rA) + d

 value

ndex”,
gister + register

ctive address is (rA) + (rB)

opcode to indicate indexed

, r6

0 in either of these forms, the
0 (not the contents of r0).
EECS 373 F99 Notes 2-2

Simple Example, cont’d

addi r4, r4, 0x20

add an immediate value

r4 ← (r4) + 0x20

stb r4, 0(r3)

store a byte

again, the effective address is (r3) + 0

MEM((r3) + 0 , 1) ← r4[24-31]

addi r3, r3, 1
r3 ← (r3) + 1

b loop

branch to label ‘loop’
machine language actually encodes offset (-16)

Loads & S

Loads and store opcodes
character indicates the ac
(2 bytes), or word (4 bytes)

The effective address can

1. “register indirect with i
aka base + offs

written “d(rA)”, effe

d is a 16-bit signed

2. “register indirect with i
aka indexed, re

written “rA,rB”, effe

must append ‘x’ to

e.g.: stbx r4, r5

catch: if rA (but not rB) is r
processor will use the value

© 1998, 1999 Steven K. Reinhardt

re Miscellany

re OK, but slower than aligned

lwz stb sth stw
lwzx stbx sthx stwx
lwzu stbu sthu stwu
lwzux stbux sthux stwux
EECS 373 F99 Notes 2-3

Loads & Stores cont’d

• Zeroing vs. algebraic (loads only)

Contrast: lha r4, 0(r3)

lhz r4, 0(r3)

The algebraic option is:
1. not allowed for byte loads (use extsb instruction)
2. illegal for word loads on 32-bit implementations

• Update mode

e.g.: lwzu r4, 1(r3)

EA ← (r3) + 1
r4 ← MEM(EA, 4)
r3 ← EA

Load/Sto

• Unaligned accesses a

• PowerPC is big-endian

• Summary:

lbz lhz lha
lbzx lhzx lhax
lbzu lhzu lhau
lbzux lhzux lhaux

• Miscellaneous
• integer doubleword
• floating-point
• multiple
• string
• byte-reversed
• reservations

© 1998, 1999 Steven K. Reinhardt

ogical (cont’d)

, or, xor) have a third version:

fix)

means r1 ← (r2) + (5 || 0x0000)

u twiddle bits in the upper half of a
ion.

is is to load a value outside the 16-bit

pplies (addi and addis only)

ics”:
EECS 373 F99 Notes 2-4

Arithmetic & Logical Instructions

Most have two versions:

1. register-register

ex: add r1, r2, r3 means r1 ← (r2) + (r3)

2. immediate (i suffix)

ex: addi r1, r2, 5 means r1 ← (r2) + 5

Immediate operands are limited to 16 bits. (Why?)

Immediates are always expanded to 32 bits for processing.
Arithmetic operations (add, subtract, multiply, divide) sign
extend the immediate, while logical operations (and, or, etc.)
zero extend the immediate. What is the range of a sign-
extended 16-bit immediate?

What is the range of a zero-extended 16-bit immediate?

Arith. & L

A few instructions (add, and

3. immediate shifted (is suf

ex: addis r1, r2, 5

• andis, oris, xoris let yo
register in one instruct

• The primary use of add
immediate range.
• funky ld/st r0 rule a

• “simplified mnemon

• lis

• li

© 1998, 1999 Steven K. Reinhardt

tics (cont’d)

subf’: subtract from

means r3 ← r5 - r4

rsion; ‘c’ indicates carry flag is set

d mnemonics”

ub variants deal with carry flag
d precision.

ct of two 32-bit numbers is 64 bits

ower 32 bits of product

te upper 32 bits of product

unsigned division
EECS 373 F99 Notes 2-5

Aside: Dealing w/32-bit Immediates

Two ways to put a full 32-bit value in a register:

lis r3, 5
ori r3, r3, 99

or

lis r3, 5
addi r3, r3, 99

When are these not equivalent?

Assembler suffixes:

• @h

• @ha

• @l

Arithme

Subtraction instruction is ‘

subf r3, r4, r5

• subfic is immediate ve

• sub, subi are “simplifie

• neg (negate)

• Numerous other add/s
(XER[CA]) for extende

Multiply:

• classic problem: produ

• mulli, mullw generate l

• mulhw, mulhwu genera

Divide:

• divw, divwu for signed/

© 1998, 1999 Steven K. Reinhardt

Their Full Glory

:

 amount

t by (32 - n)

ask

eginning & ending bit positions
)

 are 1, others are 0

s “wrap around”

immediate then AND with mask

te, MaskBegin, MaskEnd

hen AND with mask
te count in register (not immediate)

immediate then mask insert

mple masking (i.e. rotate count = 0)
EECS 373 F99 Notes 2-6

Logicals, Shifts, and Rotates

Basics (register-register or register-immediate):

• and, or, xor

Plus a few more (no immediate forms):

• nand, nor, not

• eqv (not xor)

• andc, orc (complement second argument)

And on the bleeding edge:

• cntlzw

Shifts:

• slw, srw, slwi, srwi: shift (left|right) word (immediate)

• sraw, srawi: shift right algebraic word (immediate)

Rotates:

• rotlw, rotlwi, rotrwi: shift (left|right) word (immediate)

• no rotrw: must rotate left by 32 - n (use subfic)

• all are simplified mnemonics for rlwnm/rlwinm...

Rotates In

All rotates have two steps

1. Rotate left by specified

• same as rotate righ

2. Combine result with m

• mask specified by b
(called MB and ME

• bits MB through ME

• if (MB > ME), the 1

• rlwinm: rotate left word

rlwinmrD, rS, Rota

• rlwnm: rotate left word t
• like rlwinm, but rota

• rlwimi: rotate left word

rlwinm is also useful for si

© 1998, 1999 Steven K. Reinhardt

nstructions

diate

 code bits (in CR register):

 1)
EECS 373 F99 Notes 2-7

Example Revisited

Here’s a more complete version of the example that:
• initializes the address
• stops at the end of the string

string: .ascii “BIFF\0”

main: lis r3, string@h
ori r3, r3, string@l

loop: lbz r4, 0(r3)
cmpwi r4, 0
beq done
addi r4, r4, 0x20 # 'a' - 'A'
stb r4, 0(r3)
addi r3, r3, 1
b loop

done: b done

New I

cmpwi r4, 0

compare word imme

sets three condition
• LT

• GT

• EQ

beq done

branch if equal

branches iff (EQ ==

© 1998, 1999 Steven K. Reinhardt

nal Branches

ndition bit true or false:

s that do not affect the condition
n the condition-code setting
.

EECS 373 F99 Notes 2-8

Condition Codes in General

Four compare instructions:

• cmpw, cmpwi

• cmplw, cmplwi

Also, any arithmetic, logical, shift or rotate instruction may set
the condition codes as a side effect, if you append a ‘.’ to the
opcode.

and. r3, r4, r5

is equivalent to

and r3, r4, r5
cmpwi r3, 0

Exceptions: the following instructions do not exist

• addi., addis.

• andi, andis

• ori., oris., xori., xoris.

Conditio

Can branch on any one co

• blt

• bgt

• beq

• bge (also bnl)

• ble (also bng)

• bne

Any number of instruction
codes may appear betwee
instruction and the branch

© 1998, 1999 Steven K. Reinhardt

airy Truth

tion code bit (SO, for “summary

on registers (CR0-CR7)
 bits

es use CR0 by default

gicals always use CR0

 directly on CR bits

le conditional branches

onditional branches we’ve discussed
nics”... “see Appendix F”!
EECS 373 F99 Notes 2-9

The Count Register (CTR)

A special register just for looping.

li r4, 100
mtctr r4

loop: lwzu r5, 4(r6)
add r7, r7, r5
bdnz loop

mtctr: move to CTR
requires register (no immediate form)
mfctr also available

bdnz: branch decrement not zero

CTR ← CTR-1
branch iff (CTR != 0)

condition codes are unaffected

• can combine condition code test:

bdnzt eq,loop

CTR ← CTR-1
branch iff ((CTR != 0) && (EQ == 1))

variations:
• bdnzf
• bdz
• bdzt, bdzf

The H

• There is a fourth condi
overflow”)

• There are eight conditi
• total of 32 condition

• compares & branch

• dotted arithmetic/lo

• can do boolean ops

• There are 1,024 possib

• All the compares and c
are “simplified mnemo

	PowerPC Architecture and Assembly Language
	A Simple Example
	Simple Example, cont’d
	Loads & Stores in General
	1. “register indirect with immediate index” aka base + offset, base + displacement
	2. “register indirect with index”, aka indexed, register + register

	Loads & Stores cont’d
	1. not allowed for byte loads (use extsb instruction)
	2. illegal for word loads on 32-bit implementations

	Load/Store Miscellany
	Arithmetic & Logical Instructions
	1. register-register
	2. immediate (i suffix)

	Arith. & Logical (cont’d)
	3. immediate shifted (is suffix)

	Aside: Dealing w/32-bit Immediates
	Arithmetics (cont’d)
	Logicals, Shifts, and Rotates
	Rotates In Their Full Glory
	1. Rotate left by specified amount
	2. Combine result with mask

	Example Revisited
	New Instructions
	Condition Codes in General
	Conditional Branches
	The Count Register (CTR)
	The Hairy Truth

