
1

EECS 373
Design of Microprocessor-Based Systems

• http://www.eecs.umich.edu/courses/eecs373

Lecturer: Mark Brehob

Lab Instructor: Matthew Smith

Teaching Assistant: Ron Hagiz

Winter 2004

Welcome

• Class overview
– What are embedded systems?
– Why are they interesting?

• Right into PPC assembly

Up and coming…

• Lab 1 is this week. Due by this Friday.
(it’s fairly short)

• Lab 2 prelab is due at start lab next week
(at the “half hour” after the start of lab start)

What are embedded processors?

• You get into your car and turn the key on. You
take a 3.5" floppy disk from the glove
compartment, insert it into a slot on the
dashboard, and drum your fingers on the steering
wheel until the operating system prompt appears
on the dashboard LCD. Using the cursor keys on
the centre console you select the program for
electronic ignition, then turn the key to start the
engine. On the way to work you want to listen to
some music, so you insert the program CD into the
player, wait for the green light to flash indicating
that the digital signal processor in the player is
ready, then put in your music CD.

From Ball Embedded Microprocessor Systems as are some other slides here

So….

• You don't need a traditional user interface to
decide which programs should be running

• You don't need to load programs into your devices
• You don't need to waste time waiting for the O/S

to load
– if one is needed, then it doesn't have baggage that make

it slow to load
• You don't need to load programs or data from a

slow disk drive - most information needed will be
in fast ROM

http://jan.netcomp.monash.edu.au/internetdevices/embedded/embedded_proc.html as are
Some other slides here.

Definition:

• Dedicated to controlling a specific real-time
device or function

• Self-starting, not requiring human
intervention to begin. The user cannot tell if
the system is controlled by a
microprocessor or by dedicated hardware

• Self-contained, with the operating program
in some kind of non-volatile memory

2

How are things controlled?

• Switches
– Switches can be used to switch things on or off e.g. lights can be

on or off
– They can also be used to switch between values e.g a heater can be

set to a number of values
• Sensors

– Sensors can tell if something is on or off
– Sensors can tell you the value of something e.g. temperature

• Timers
– Timers can control the duration of other activities, such as how

long a light is on
• Analog controllers

– Things such as voltage can be set for analogue devices such as
motors

Overview

• Examples of microprocessor-based (a.k.a. embedded) systems:

• Why are microprocessors used in increasingly many systems?
(What’s “wrong” with application-specific integrated circuits?)

What we will cover
• PowerPC architecture and assembly language
• Bus protocols and interfacing

– Including P6, PCI, and maybe firewire etc.
• Digital design review.
• Common I/O devices

– Timers, A/D converters, serial I/O, video
• Interrupts

– I/O devices demanding attention
• Direct Memory Access (DMA):

– I/O devices talk directly to memory
• Memory technologies: SRAM, DRAM, Flash etc

PowerPC Architecture and Assembly
Language

• Overview
• Loads and Stores
• Arithmetic and Logical Operations
• Shifts and Rotates
• Branches

Reference:
Chapters 3 and 4 of PowerPC manual

Instruction Set Architectures

An Instruction Set Architecture (ISA) defines an interface between
software and hardware:

• Specifies processor aspects visible to programmer
• number and size of registers
• precise semantics and encoding of instructions

• Not tied to a particular implementation (microarchitecture)

. .
 .

registers memoryinstructions

PowerPC ISA

• Jointly defined by IBM, Apple, and Motorola in 1991
• Used by Apple on Power Macintosh systems
• Based on IBM Power ISA used in RS/6000 workstations
• MPC823 implements 32-bit version, no floating point

• RISC (Reduced Instruction Set Computer) features:
• 32-bit fixed-length instructions
• 32 general purpose registers, 32 bits each
• Only load/stores access memory and external devices.
All others operate on registers.

• Non-RISC features:
• Several special-purpose registers
• A few strange instructions (rlwimi)

3

• (r4) means the contents of register 4.
• (x)0 indicates x 0's in a row.
• 0x5555 means 555516 just as it does in C/C++.
• The symbol || means concatenation. So 15||0x0000

would be the same as 0xF0000.
• MEM(x,y) is a reference to y bytes at memory

location x.
• r4[x-y] is a reference to bits x though y of register

4.

Databook notation
Example

loop: lbz r4, 0(r3)
add r5, r4, r5
addi r3, r3, 1
b loop

Add an (infinite) set of bytes beginning at the byte-address
stored in register r3. Result in r5, which starts as zero.

Example (cont’d)
lbz r4, 0 (r3)

• loads a byte and zero-extends it to 32 bits
• effective address is (r3) + 0
• data book notation:

r4 (24)0 || MEM((r3) + 0 , 1)

add r5, r4, r5

• add a register

• r4 (r4) + (r5)

Example (cont’d)

addi r3, r3, 1

• add an immediate value

• r3 (r3) + 1

b loop

• branch to label loop

• machine language actually encodes offset -16 (well –4)
(Why?)

Loads and Stores
• Load/store opcodes start with l and st, respectively. Next character
indicates access size:

byte, halfword, (2 bytes), or word (4 bytes)

• The effective address can be computed in two ways:
• register indirect with immediate index

• also known as base + offset or base + displacement
• “d(ra)” denotes effective address is (ra) + d
• d is a 16-bit signed value (Why only 16?)

• register indirect with index
• also known as indexed or register + register
• “ra, rb” denotes effective address is (ra) + (rb)
• must append “x” to opcode: stbx r4, r5, r6

• Beware! If ra is r0, the value 0 will be used (not the contents of r0).

Zeroing vs. Algebraic Loads

lhz r4, 0(r3) : halfword in (r3)+0 is loaded into low 16 bits
of r4; remaining bits in r4 are cleared.

lha r4, 0(r3) : halfword in (r3)+0 is loaded into low 16 bits
of r4; remaining bits in r4 are filled with copy of MSB in
loaded halfword.

The algebraic option is
• not allowed for byte loads (use extsb instruction)
• illegal for word loads on 32-bit implementations

4

Update Mode

lwzu r4, 1(r3)

effective address (r3) + 1
r4 MEM (EA, 4)
r3 effective address

“ Details” and Summary

• Unaligned accesses are OK, but slower than aligned

• PowerPC is big-endian

• Summary of load/store instructions seen so far:

lbz lhz lha lwz stb sth stw
lbzx lhzx lhax lwzx stbx sthx stwx
lbzu lhzu lhau lwzu stbu sthu stwu
lbzux lhzux lhaux lwzux stbux sthux stwux

• Other stuff: integer doublewords, floating point, multiple,
string, byte-reversed, reservations,…

Aligned Big-Endian Mapping
struct{

int a; /* 0x1112_1314 word */
double b; /* 0x2122_2324_2526_2728 double word */
char* c; /* 0x3132_3334 word */
char d[7]; /* ‘L’, …, ‘R’ array of bytes */
short e; /* 0x5152 half word */
int f; /* 0x6162_6364 word */

} S;

11 12 13 14

21 22 23 24 25 26 27 28

31 32 33 34 L M N O

P Q R 51 52

00 01 02 03 04 05 06 07

61 62 63 64

20 21 22 23 24 25 26 27

address (hex)

contents

contents

contents

contents

contents

address (hex)

Arithmetic and Logical Instructions

• Most have two versions:
• Register-register

add r1, r2, r3 means r1 (r2) + (r3)
• Immediate (suffix i)

addi r1, r3, 5 means r1 (r3) + 5

• Immediate operands are limited to 16 bits (Why?)

• Immediates are always expanded to 32 bits for processing.
Arithmetic operations (+, -, *, /) sign extend the immediate.
Logical operations (and, or, etc) zero extend the immediate.

Arithmetic and Logical (cont’ d)

• A few instructions (add, and, or, xor) have a third version:
immediate shifted (suffix is)
addis rb, ra, 5 means rb (ra) + (5 || 0x0000)

• andis, oris, xoris enable twiddling of bits in upper half of
register in one instruction

• The primary use of addis is to load a value outside the 16-bit
immediate range

• ld/st rule for ra=r0 applies for addi and addis only
• simplified mnemonics: lis, li

Dealing with 32-bit Immediates

Two ways for loading a full 32-bit value into a register:

lis r3, 5 lis r3, 5
ori r3, r3, 99 addi r3, r3, 99

When are these two approaches not equivalent?

5

Sub, Mult, and Div

• Subtraction: subf means subtract from
• subf r3, r4, r5 results in r3 = r5 – r4
• subfic is immediate version; ‘c’ indicates carry flag is set
• sub, subi are simplified mnemonics
• numerous other add/sub variants deal with carry flag for
extended precision

• Multiply
• Issue: product of two 32-bit numbers is 64 bits
• mulli, mullw generate lower 32 bits of product
• mulhw, mulhwu generate upper 32 bits of product

• Divide
• divw, divwu for signed/signed division

Logical, Shifts, and Rotates
• Basics (register-register or register-immediate)

• and, or, xor

• A few more (no immediate forms)
• nand, nor, not
• eqv (not xor)
• andc, orc (complement second argument)

• Shifts
• slw, srw, slwi, srwi: shift left/right word (immediate)
• sraw, srawi: shift right algebraic word (immediate)

• Rotates
• rotlw, rotlwi, rotrwi: rotate left/right word (immediate)
• No rotrw, must rotate left by 32-n (use subfic)

More on Rotates
• All rotates have two steps:

• Rotate left by specified amount (same as rotate right by 32-n)
• Combine result with mask
• Mask specified by beginning and ending but positions (MB
and ME)
• Bits MB through ME are 1, others are 0
• If MB > ME, the 1s wrap around

• rlwinm: rotate left word immediate then AND with mask
(also useful for simple masking, i.e. rotate count = 0)

rlwinm rD, rS, Rotate, MB, ME

• rlwnm: like rlwinm, but rotate count in register (not immediate)

• rlwimi: rotate left word immediate then mask insert

Example Revisited

list: .byte 0x20,4,-12,20

main: lis r3, list@h
ori r3, r3, list@l
addi r5, r0, 0
addi r3, r3, -1
addi r6, r0, 0

loop: lbzu r4, 1(r3)
add r5, r4, r5
addi r6, r6, 1
cmpwi r3, 4
beq done
b loop

done: b done

A more complete version of the example the earlier slide that
initializes the address and stops at the end of the list

New Instructions

cmpwi r3, 4
• compare word immediate
• Sets three condition code bits in Condition Register (CR):

LT, GT, EQ

beq done
• branch if equal
• Branches if (EQ==1)

Assembler suffixes:
• @h
• @l

Condition Codes in General
• Four comparison instructions:

cmpw, cmpwi, cmplw, cmplwi

• Any arithmetic, logical, shift, or rotate instruction may set the
condition codes, if you append a ‘.’ to the opcode:

and. r3, r4, r5
is equivalent to

and r3, r4, r5
cmpwi r3, 0

• The following instructions do not exist, however:
addi. , addis.
andi. , andis.
ori. , oris. , xori. , xoris.

6

Conditional Branches

Can branch on any one condition bit being true or false:
• blt
• bgt
• beq
• bge (also bnl)
• ble (also bng)
• bne

Any number of instructions that do not affect the condition codes
may appear between the condition code setting instruction and
the branch.

The Count Register (CTR)
• Special register devoted to looping:

li r4, 100
mtctr r4

loop: lwzu r5, 4(r6)
add r7, r7, r5
bdnz loop

• mtctr: move to CTR (requires register, no immediate form)
mfctr: move from CTR

• bdnz: branch decrement not zero
CTR CTR – 1
branch iff (CTR != 0)
condition codes are unaffected

CTR (cont’ d)

• Can combine CTR test with condition code test:

bdnzt eq, loop

CTR CTR – 1
branch iff ((CTR != 0) && (EQ == 1))

• Variations:

bdnzf , bdz , bdzt , bdzf

More on Condition Codes

• There is a fourth condition code bit SO (summary overflow)

• There are eight condition registers (CR0—CR7):
• Total of 32 condition bits
• Compares and branches use CR0 by default
• Dotted arithmetic/logical instructions always use CR0
• Can do boolean operations directly on CR0 bits

• There are 1024 possible conditional branches

• All the compares and conditional branches we discussed are
simplified mnemonics (see Appendix F for details)

