Memories

The third key component of a microprocessor-based system (besides the CPU and I/O devices).

• Classification
• Physical and external configuration
• Timing
• Types

Basic Categories

- **Read-Only Memory (ROM):**
 - Can only be read; cannot be modified (written).
 - Contents of ROM chip are set before chip is placed into the system.

- **Random-Access Memory (RAM):**
 - Read/write memory. Although technically inaccurate, term is used for historical reasons. (ROMs are also random access.)

- **Volatile memories**
 - Lose their contents when power is turned off.
 - Typically used to store program while system is running.

- **Non-volatile memories** do not.
 - Required by every system to store instructions that get executed when system powers up (boot code).

Classification

<table>
<thead>
<tr>
<th>ROM</th>
<th>RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Volatile</td>
<td>Static RAM (SRAM)</td>
</tr>
<tr>
<td></td>
<td>Dynamic RAM (DRAM)</td>
</tr>
<tr>
<td>Non-volatile</td>
<td>Mask ROM, EEPROM, PROM, EPROM, Flash memory, BBSRAM</td>
</tr>
</tbody>
</table>

Note that we can write some of these “ROMS”

Memory Array

Different memory types are distinguished by technology for storing bit in memory cell.

Support Circuitry

Control signals:
• Control read/write of array
• Map internal physical array to external configuration (4x4 → 16x1)

Interface (1/2)

- **Physical configurations** are typically square.
 - Minimize length word + bit line → minimize access delays.

- **External configurations** are “tall and narrow”.
 - The narrower the configuration, the higher the pin efficiency. (Adding one address pin cuts data pins in half.)
 - Several external configurations available for a given capacity
 - 64Kbits may be available as 64Kx1, 32Kx2, 16Kx4,…
Interface (2/2)

- **Chip Select (CS’):** Enables device. If not asserted, device ignores all other inputs (sometimes entering low-power mode).
- **Write Enable (WE’):** Store D0 at specified address.
- **Output Enable (OE’):** Drive value at specified address onto D0.

System-Level Read Timing

![System-Level Read Timing Diagram]

If the CPU starts driving the address and RD/WR’ at the same time, what is the access time?

Memory Timing: Reads

![Memory Timing: Reads Diagram]

- **Access time:** Time required from start of a read access to valid data output.
 - Access time specified for each of the three conditions required for valid data output (valid address, chip select, output enable).
 - Time to valid data output depends on which of these is on critical path.
- **tRC:** Minimum time required from start of one access to start of next.
 - For most memories equal to access time.
 - For DRAMs could exceed 2x. Why?

Memory Timing: Writes

![Memory Timing: Writes Diagram]

- Write happens on rising edge of WE’.
- Separate access times tAW, tCW, tWP specified for address valid, CS’, WE’.
- Typically, tAW = 0, meaning that WE’ may not be asserted before address is valid.
- Setup and hold times required for data.
- Write cycle time tWC is typically in the order of tAW.

Mask ROM

- By far the simplest technique.
- Presence/absence of diode at each cell denotes binary value.
- Pattern of diodes defined by mask used in fabrication process.
- Contents fixed when the chip is made; cannot be changed.
- Large setup cost (design mask), small marginal cost.
- Good for high-volume applications where upgrading contents is not an issue.

- What value is stored by presence of diode?
- Why diode rather than simply wire?

Programmable ROM (PROM)

- Replace the diode in each cell of a Mask ROM by diode + fuse (fusible-link PROM).
- Initial contents are all 1s.
- Users program memory by blowing fuses to create 0s.
- Plug chip into PROM programmer (“burner”) device and download data file.
- One-time programmable
UV Erasable PROM (EPROM)

- Replace PROM fuse with pass transistor controlled by “floating” (i.e. electrically insulated) gate.
- Program by charging gate to switch pass transistor. (Use special “burner” to apply high voltage that overcomes insulation.)
- Erase by discharging all gates using ultraviolet light. (UV photons carry electrons across insulation.)
- Insulation eventually breaks down limited number of erase/program cycles (100s to 1000s).
- Costly: Requires special package with window.
- Largely displaced by flash memory.

Electrically Erasable PROM (EEPROM)

- Similar to UV EPROM, but with on-chip circuitry to electrically charge/discharge floating gates (no UV).
- Writable by CPU → really a RAM despite name.
- Reads/writes much like generic RAM: Internal circuitry erases affected byte/word, then reprograms to new value.
- Write cycle in the order of a millisecond.
- High voltage input (e.g. 12V) required for writing.
- Limited number of write cycles (1000s).
- Selective erasing requires extra circuitry in each memory cell → Lower density and higher cost than EPROM.

Flash Memory

- Electrically erasable like EEPROM, but only in large 8—128K blocks (not a byte at a time).
- Erase circuitry moves out of cells to periphery substantially better density than EEPROM.
- Reads much like generic RAM
- Writes for locations in erased blocks:
 - write cycle in a few microseconds slower than volatile RAM but faster than EEPROM
- To rewrite locations, must explicitly erase entire block:
 - erase can take several seconds erased blocks can be rewritten a byte at a time
- Floating gate technology → Erase/program cycle limit (10-100K cycles per block)

Flash Applications

- Flash technology has made rapid advances in recent years.
 - cell density rivals DRAM; better than EPROM; much better than EEPROM.
 - multiple gate voltages can encode 2 bits per cell.
 - 1Gb devices available
- ROMs and EPROMs rapidly becoming obsolete.
- Replacing hard disks in some applications.
 - smaller, lighter, faster
 - more reliable (no moving parts)
- cost effective
- PDAs, cell phones, laptops,…

Battery-Backed Static RAM (BBSRAM)

- Standard volatile SRAM device with battery backup.
- Key advantage: writes take as much time as reads.
- Circuitry required to switch battery on/off.

Static RAM

- Volatile memory
 - Each cell is basically a flip-flop
 - 4—6 transistors per cell → relatively poor density
 - Very fast (access times under 10ns commonplace)
 - Reads/writes at same speed
Dynamic RAM

- One transistor per cell → outstanding density
- Very small charges involved → relatively slow
 - Bit lines must be precharged to detect bit values.
 - Reads are destructive; internal writebacks required.
 - Values must be periodically refreshed or charge will leak away.