
1

Interrupts

Stopping program flow to execute a special piece
of code that handles an event

• Definition and classification
• PowerPC interrupt structure
• Precise exceptions
• Handling multiple interrupts

Nesting, prioritization

Reference: Chapter 6, Programming Environment
Section 6.3.3, User’s Manual

I/O Data Transfer

1. How does the CPU know when data is available?

(a) Polling (b) Interrupts

2. How is data transferred into and out of the device?

(a) Programmed I/O (b) Direct Memory Access (DMA)

Two key questions to determine how data is transferred to/from a
non-trivial I/O device:

Interrupts
Interrupt (a.k.a. exception or trap): An event that causes the CPU to

stop executing the current program and begin executing a
special piece of code called an interrupt handler or interrupt
service routine (ISR). Typically, the ISR does some work and
then resumes the interrupted program.

Interrupts are really glorified procedure calls, except that they:
• can occur between any two instructions
• are transparent to the running program (usually)
• are not explicitly requested by the program (typically)
• call a procedure at an address determined by the type of

interrupt, not the program

Two basic types of interrupts
(1/2)

• Those caused by an instruction
– Examples:

• TLB miss
• Illegal/unimplemented instruction
• div by 0

– Names:
• Trap, exception, synchronous interrupt

Two basic types of interrupts
(2/2)

• Those caused by the external world
– External device
– Reset button
– Timer expires
– Power failure
– System error

• Names:
– interrupt, external interrupt, asynchronous interrupt.

How it works

• Something tells the processor core there is
an interrupt

• Core transfers control to code that needs to
be executed

• Said code “returns” to old program
• Much harder then it looks.

– Why?

2

… is in the details

• How do you figure out where to branch to?
• How to you insure that you can get back to

where you started?
• Don’t we have a pipeline? What about

partially executed instructions?
• What if we get an interrupt while we are

processing our interrupt?
• What if we are in a “critical section?”

Where

• If you know what caused the interrupt then you
want to jump to the code that handles that
interrupt.
– If you number the possible interrupt cases, and an

interrupt comes in, you can just branch to a location,
using that number as an offset (this is a branch table)

– If you don’t have the number, you need to poll all
possible sources of the interrupt to see who caused it.

• Then you branch to the right code

Get back to where you once
belonged

• Need to store the return address somewhere.
– Stack might be a scary place.

• That would involve a load/store and might cause an
interrupt!

– So a dedicated register seems like a good
choice

• But that might cause problems later…

Snazzy architectures

• A modern processor has many (often 50+)
instructions in-flight at once.
– What do we do with them?

• Drain the pipeline?
– What if one of them causes an exception?

• Punt all that work
– Slows us down

• What if the instruction that caused the exception
was executed before some other instruction?
– What if that other instruction caused an interrupt?

Nested interrupts

• If we get one interrupt while handling another
what to do?
– Just handle it

• But what about that dedicated register?
• What if I’m doing something that can’t be stopped?

– Ignore it
• But what if it is important?

– Prioritize
• Take those interrupts you care about. Ignore the rest
• Still have dedicated register problems.

Critical section

• We probably need to ignore some interrupts
but take others.
– Probably should be sure our code can’ t cause

an exception.
– Use same prioritization as before.

3

Power PC

• Power PC is a great teaching tool for this
because it is so messed-up in how it handles
things
– It supports almost every option you could ever

want.

• Names
– Synchronous interrupts
– Asynchronous interrupts

PowerPC Interrupt Structure

Machine Status Register (MSR)
• Defines the state of the processor (Table 6-5): Power

management, endian mode, external interrupt enable,
machine check enable, privilege level, recoverable
exceptions, etc.

• When an exception occurs, MSR bits are altered as
determined by the exception.

• Support for interrupts
• Two special-purpose registers to store program counter

and MSR: Save/Restore Registers 0 and 1 (SRR0 and
SRR1)

• One instruction: return from interrupt (rfi)

PowerPC: Interrupt Process

• Basic interrupt process
– Stop executing current program (stop fetching new

instructions)
– Save program counter of next instruction in SRR0
– Save processor mode bits from MSR in SRR1
– Change some of the processor mode bits in MSR
– Branch to address determined by type of interrupt
– The last instruction in an ISR will be an rfi which will
– Restore the processor mode bits from SRR1
– Branch to the address in SRR0

MSR
0-12 reserved
13 POW power management
14 reserved
15 ILE exception little-endian
16 EE external interrupt enable (0: delay recognition; 1: enabled)
17 PR privilege level (0: user and supervisor-level; 1: user only)
18 FP floating point available
19 ME machine check enable
20 FE0 floating point exception mode 0
21 SE single-step trace enable
22 BE branch trace enable
23 FE1 floating point exception mode 1
24 reserved
25 IP exception prefix (000 or FFF)
26 IR instruction address translation
27 DR data address translation
28-29 reserved
30 RI recoverable exception
31 LE little-endian enable (0: big-endian; 1: little-endian)

Example: External Interrupt
An external interrupt is signaled to the processor through the
assertion of the external interrupt signal.

Execution continues at offset 0x00500 from base physical location
determined by MSR[IP] bit.

SRR0: Set to the effective address that processor would have
attempted to execute next if no interrupt condition were present.

SRR1: 1-4 cleared
10-15 cleared
16-23, 25-27, 30-31 loaded with equivalent bits from MSR

MSR: POW = 0 FP = 0 BE = 0 DR = 0
ILE = same ME = same FE1 = 0 RI = 0
EE = 0 FE0 = 0 IP = same LE = ILE
PR = 0 SE = 0 IR = 0

MPC823 Interrupts (Table 7-1)
Type Cause

• System reset Implementation dependent.
• Machine check Bus-parity errors, access invalid physical address.
• DSI Cannot perform data memory access due to page

faults, protection violations etc.
• ISI Cannot fetch next instruction due to page faults,

protection violations etc.
• External interrupt Assertion of external interrupt signal.
• Alignment Cannot perform memory access due to alignment

problems, endian problems, etc. Implementation
dependent.

• Program Floating point operations, illegal instruction,
privilege violation etc.

• Floating point unavailable
• Decrementer MSB of decrementer changes from 0 to 1.
• System call
• Trace Complete instruction w/o exception or context change.

4

Precise Exceptions
• Concurrent execution: To maximize performance, instructions are
processed concurrently, independent of the sequence in program.

• Hardware ensures that program semantics are preserved.

• Difficult requirement to assure when interrupt occurs after
instructions following “faulting” instruction have started or
completed.

• Precise exception model: Automatically back machine up to the
instruction that caused interrupt.

• MPC823 uses a history buffer to support precise exceptions.

Interrupt Ordering
• Synchronous (i.e. instruction-related) exceptions are detected at
any stage during instruction execution.

• The earliest exception found in the processing of an instruction
precludes detection of further exceptions and is eventually handled.

• If more than one instruction in the pipeline causes an exception,
only the first is taken. Any remaining synchronous exceptions are
ignored.

• More than one asynchronous interrupt causes may be present at
any time, in which case only the highest priority interrupt is taken.

PowerPC Exception Priorities

Class Priority Exception

Non-maskable, async 1 System reset
2 Machine check

Synchronous precise 3 Instruction dependent

Synchronous imprecise 4 Floating point

Maskable, async 5 External interrupt
6 Decrementer

If MSR[EE]=0, delayed until bit is set

Nesting Interrupts

• Nested interrupt: An interrupt that happens during the execution
of an ISR.

• Multiple interrupting devices with long ISRs
• Virtual memory support for ISRs
• Debugging ISR code

• What must ISRs do to support nested interrupts?

Disabling Interrupts
• Sometimes interrupts must be avoided.

• Time-critical instruction sequences (real-time applications)
• Prologue sequence of ISRs
• Changes in data structures shared with ISRs

• Synchronous interrupts: Not much choice. Can only be avoided
by not executing instructions that might cause them such as illegal
instructions or loads or stores to non-existent addresses.

• Asynchronous interrupts from external devices: Can be disabled
(masked) using the external interrupt enable (EE) mode bit of MSR.

• If 0, external interrupt signal is ignored.
• If 1, external interrupt signal causes interrupt when asserted.
• EE is automatically set to 0 in the beginning of every interrupt.

• Some interrupts are not maskable: Reset

Managing Interrupts from Multiple Devices

• When multiple devices can interrupt the CPU, the system must
determine which device to service

• Related issues
• Identification: Which device caused the current interrupt?
• Prioritization: If more than one device is simultaneously
interrupting, which one is handled first?

• Three standard approaches
• Non-vectored
• Vectored
• Autovectored

http://www.chipcenter.com/eexpert/dgilbert/dgilbert005.html

5

Non-Vectored Interrupts

• Simplest hardware, least flexible.

• 6802, PowerPC, MIPS,…

• Single interrupt input to CPU.

• CPU always branches to same ISR.

• ISR polls each device to see which may have caused interrupt.

• Prioritization?

Vectored Interrupts

• Used in 8080, 80x86, Z80

• As with non-vectored interrupts, single CPU interrupt input.

• Interrupt handler (implemented in hardware) enables a branch to
occur to a different address for each specific interrupt.

• CPU performs special interrupt acknowledge bus cycle to obtain
interrupt vector number directly from device.

• Typically requires that devices be designed to work with specific
CPU.

• Prioritization typically via daisy chain (look up in 370 material).

Auto-Vectored Interrupts
• Used in 68000, SPARC.

• Can be built on top of vectored or non-vectored interrupts.

• Multiple CPU interrupt inputs, one for each priority level.

• Interrupt vector is supplied automatically based on highest-priority
asserted input.

• CPU interrupt priority level controls which inputs are recognized.
• For example, if IPL=3, levels 3, 4, 5, … are disabled.
• On interrupt, CPU automatically raises IPL to match level of
request being serviced.

• Intel 8259A interrupt controller builds autovectoring on top of
80x86.

• MPC823 provides on-chip interrupt controller for pseudo-
autovectored interrupts.

MPC823 Interrupt Controller

• Part of on-chip System Interface Unit (SIU), not part of core.
(Section 12.3 of data book)

• Eight external interrupt pins, each with its own dedicated
interrupt priority level: IRQ0’ (highest priority) through IRQ7’
(lowest priority).

• Eight internal interrupt priorities, Level 0 through 7, generated
by on-chip devices.

• Sixteen interleaved priorities: IRQ0’ (non-maskable), Level 0,
IRQ1’ , Level 1,…

• Assertion of any of these 16 interrupts can potentially assert the
PowerPC external interrupt signal.

MPC823 System Interface Unit

PowerPC
Core

In
te

rr
up

t c
on

tro
lle

r

IREQ

DEBUG

NMI

NMI
Gen

DECR

edge
detect

se
le

ct
or

decrementer

debug

PCMCIA

real-time
clock

periodic
timer

timebase

CPM/LCD/Video
Interrupt controller

IRQ’ [0:7]
IRQ’ 0

watchdog
timer

LVL7

LVL0

Priority of SUI Interrupt Sources

number priority level source code

0 highest IRQ’ 0 00000000
1 Level 0 00000100
2 IRQ’ 1 00001000
3 Level 1 00001100
4 IRQ’ 2 00010000
5 Level 2 00010100
.
.
14 IRQ’ 7 00111000
15 lowest Level 7 00111100
16—31 reserved --

6

Programming the Interrupt Controller (1/2)

• Interrupt vector register (SIVEC)
• 8-bit code gives the unmasked interrupt source of the
highest priority level (0-15).
• Read-only memory-mapped register gives interrupt code
(= source number * 4) that may be read as byte, half-
word, or word.
• Used to index interrupt table.

reserved reserved reserved8-bit code

b ISR1
b ISR2

b ISRn
. . .

Base
Base + 4
Base + 8 b ISR3

Base + n

ISR1
ISR2

ISRn
. . .

Base
Base + 400
Base + 800 ISR3

Base + n

byte half-word

??

Programming the Interrupt Controller (2/2)

IRQ0’ LVL0 IRQ1’ LVL1 IRQ7’ LVL7… …

• Interrupt mask register (SIMASK)
• Read/Write memory-mapped register.
• Bits enable/disable each interrupt.

• Interrupt pending register (SIPEND)
• Read/Write memory-mapped register.
• Bits indicate which interrupts are pending.

14 15 16 17 30 310 1 2 3

• Interrupt edge/level register (SIEL)
• Read/Write memory-mapped register.
• Bits indicate level-sensitive/edge-triggered interrupt
detection and exit from low-power mode.

reserved

PPC: Interrupts in detail

Core

IRQ#[0:7]

LVL[0:7]

Flip-
Flops mux

SIEL

SIPEND

SIMASK

SIVEC

16
16 16

8

8

88

IRQ
(core)

