
 1

MetaWare Assembling and Linking Essentials

Assembling
 An assembler translates assembly language statements or source into a file of
binary coded machine instructions and data. The translation process generally consists of
two parts: 1) identify and associate labels with memory locations and 2) translate
assembly instructions into numeric or machine codes. The resultant binary file is
generally referred to as an object file.

Assembler Directives
 Assembler directives direct the assembler during the translations process to
perform such operations as:

• Section identification and specification
• Data storage and allocation
• Symbol declaration

Section Identification and Specification
 At the most fundamental level, a program is located in two distinct parts of
memory: 1) the program or executable portion and 2) the data storage portion. As an
assembly programmer, you must distinguish these parts so that the assembler can
distinctly locate them in memory. This is accomplished with the section assembly
directive. The syntax of the directive follows:

 .section name, class

Notice that the section directive starts with a period. The assembler distinguishes all
directives with a leading period. Name is arbitrary and identifies the section. Class
specifies or determines what kind of section proceeds. There are several classes, but we
will be concerned with just two: text and data.

Text identifies the following section as executable. This section is used for your assembly
program. For example, to declare an assembly-coded program section, my_program, you
would use the following section directive.

.section my_program, text

assembly line 1
assembly line 2
etc

An abbreviated section directive for a text section is:

 .text

 2

It is equivalent to:

 .section text, text

Notice the name of the section is ‘text’.

Data identifies the following section as data storage. This is where you will allocate and
initialize memory for arrays, buffers and variables. For example, to declare a data storage
section, my_data, use the following section directive.

 .section my_data, data

 memory allocation and initialization statements

An abbreviated section directive for data is:

 .data

It is equivalent to:

 .section data, data

Notice the name of the section is ‘data’.

Data Storage and Allocation
 There are several assembler directives for allocating and initializing memory in
the data section. We will use the following:

 .word

.half

.byte

.skip

.align

.asciiz

Word, half and byte directives allocate and initialize word, half word and byte

memory locations. The directive is followed by one or more values to be initialized. For
example,

.word 1, 2, 3, 4, 5

initializes 5 consecutive word locations to 1 through 5.

 3

 The skip n directive will allocate and zero initializes a block of n bytes. For
example, the statement:

 .skip 100

 initializes the a block of 100 consecutive bytes to zero.

 These data storage directives are usually used in conjunction with a label. A label
is not an assembler directive. It is used to associate a memory location with a symbol or
label. A label takes the form:

 Label:

 For example, to allocate a buffer of 20 words called inbuf you would use the
following statement:

 inbuf: .skip 80

 The align directive is used to set the current location to a half or word boundary.
The align directive has the syntax:

 . align n

 where n refers to a 2n location boundary. This is useful if you are allocating
consecutive half or word memory locations. The MPC accesses words or half words more
efficiently when they occur on a half and word boundaries. Allocating on an appropriate
boundary improves access efficiency.

The asciiz directive is used to allocate and initialize memory locations to
corresponding ASCII codes.

. asciz string

where string represents text bounded by quotation marks. For example, ‘123’

represents the text string 123. In addition, the asciiz directive appends a null code or zero
to the string. For example, the directive

.asciz ‘123’

will load the following values in consecutive memory locations.

0x31, 0x32, 0x33, 0x00

 4

Symbol Declaration

 There are several directives associated with symbol declaration. We are primarily
concerned with:

 .global
 .equ

 The global assembler directive exports or lists a symbol for external access. For
example, if you have a variable named ‘done_flag’ that you want accessible by another
assembled file, you need to declare the label to that memory location as global. The
following statements allocate and initizalize space for the variable ‘done_flag’ and
declare the label global.

 Done_flag .word 0

 .global done_flag

 Note that the symbol _Start must be globally declared to determine a starting
point when the linker generates an executable object.

 The equ directive is used to associate a value with a name. The directive takes the
form:

 .equ name value

 This particularly useful when assigning constant values making your code
readable and reducing the possibility of errors. For example,

 .equ size 10

 associates the decimal value 10 to the name ‘size’.

Additional Assembler Directives
 This document focuses on essential assembler directives required to do the 373
labs. There are many more assembler directives at your disposal. Several reference copies
are provided in the lab listing all the assembler directives.

 5

Linking
 Although the assembler generates and locates a binary representation of the data
and assembly instructions, the code is note ready for execution. The binary file generated
by the assembler represents the relative location of the data and program space to one
another. The locations have yet to be explicitly associated with actual memory locations.

 The MPC823 provides memory from 0x0000 0000 to 0x003F FFFF. The space
from 0x0000 0000 to 0x0001 0000 is used by the system and a SingleStep monitor that
communicates with the SingleStep Debugger running on your PC. We generally use the
space from 0x0001 0000 to 0x003F FFFF. The linker file file-link.txt file contains linker
commands to associate the text and data sections with specific memory addresses.
Specifically,

 SECTIONS {

 .text ADDRESS 0x10000:

 .data ADDRESS 0x11000:

}

 The text or executable code will start at location 0x0001 0000 and the data will
start at 0x0001 1000.

 6

Example

 The following is an example of a data section and the corresponding memory
contents.

 .data memory location contents

flag1: .byte 0 0x11000 0x00
 0x11001 unknown
 .align 1
flag2: .byte 1 0x11002 0x01
 0x11003 unknown
 .align 2
array1: .word 2, 3456 0x11004 0x00
 0x11005 0x00
 0x11006 0x00
 0x11007 0x02
 0x11008 0x03
 0x11009 0x04
 0x1100A 0x05
 0x1100B 0x06
msg: asciiz ‘123’ 0x1100C 0x31
 0x1100D 0x32
 0x1100E 0x33
 0x1100F 0x00

The following example is identical to the previous example with alignment
directives removed.

 .data memory location contents

flag1: .byte 0 0x11000 0x00
flag2: .byte 1 0x11001 0x01
array1: .word 2, 3456 0x11002 0x00
 0x11003 0x00
 0x11004 0x00
 0x11005 0x02
 0x11006 0x03
 0x11007 0x04
 0x11008 0x05
 0x11009 0x06
msg: asciiz ‘123’ 0x1100A 0x31
 0x1100B 0x32

 0x1100C 0x33
 0x1100D 0x00

 7

Notice that flag2 in no longer located on a half word boundary and the array1 is
no longer located on a word boundary.

