
EECS 373
Exam 2

Winter 2005

March 24, 2005

(SOLUTIONS)

Name:

University of Michigan uniqname:

Open book, open notes. Calculators are permitted, but no laptops,

PDAs, cell phones, etc. This exam has seven problems on ten pages.

Problems vary in difficulty; it is strongly recommended that you do

not spend too much time on any one problem.

The rules of the Honor Code of the University of Michigan College of

Engineering apply for this exam.

Honor code pledge: I have neither given nor received aid on this

examination, nor have I concealed any violations of the Honor Code.

Signature:

(examinations without a signed honor pledge will not be graded)

1

1. Interrupts (9 points):

When programming an interrupt service routine, one thing your code must do is to save the MSR
into SRR1.

TRUE ***FALSE***

When programming an interrupt service routine, one thing your code must do is to disable external
interrupts at the beginning of the ISR to prevent nested interrupts.

TRUE ***FALSE***

Even a very simple interrupt handler that does not support nested interrupts must always re-enable
interrupts before returning with an rfi instruction.

TRUE ***FALSE***

2

2. Control system behavior: (14 points):

As you vary the gain of a proportional controller from zero up to a little over one, you observe
all of the following behaviors at different gain values:

(a). output oscillates with increasing amplitude

(b). output oscillates forever with constant amplitude

(c). output does absolutely nothing (stays constant forever)

(d). output settles to correct value quickly (with no overshoot)

(e). output overshoots the correct value then settles to it fairly quickly

(f). output very slowly heads toward correct value and eventually settles there

(g). output overshoots the correct value and oscillates for a long time (and gradually settles
down to the correct value)

Complete the table below to match each behavior (a) through (g) with a gain value. This is a
one to one mapping; each behavior should be associated with exactly one gain value. Hint: think
about the order in which these behaviors will occur as you vary the gain.

Gain Behavior

0.0 (c)

0.2 (f)

0.4 (d)

0.6 (e)

0.8 (g)

1.0 (b)

1.2 (a)

3

3. Control system debugging: (8 points):

For your EECS 373 final project, you decide to build a custom cooling system for a heavily
overclocked gaming PC. You don’t like a lot of noise, so you do not want to run the cooling
fan at full speed. You use a temperature sensor on the CPU and a simple proportional feedback
control system to control the fan speed. The user can pick a specific CPU temperature, and
your control system will adjust the fan speed to maintain that temperature. When you initially
test your system, you find that it basically works, but whenever you change the desired CPU
temperature, the actual CPU temperature oscillates above and below this temperature and it
takes several minutes for it to settle down.

What should you try first to improve the controller?

(a). add an integral term into your control function

(b). add a derivative term into your control function

(c). introduce some time delay into your control loop

(d). increase the proportional gain

(e). *** decrease the proportional gain ***

You get the above problem solved, but you observe that there are steady state errors in the
temperature. When the user requests a temperature change, the system goes smoothly to a new
temperature near the desired one. However, it never quite reaches the desired temperature even
after waiting for a very long time.

Now what should you try to improve the controller?

(a). *** add an integral term into your control function ***

(b). add a derivative term into your control function

(c). introduce some time delay into your control loop

(d). increase the proportional gain

(e). decrease the proportional gain

4

4. PPC programming and ABI (8 points):

Write an ABI compliant function named whereami that returns the program counter value for
the next instruction AFTER the call to whereami. The function takes no arguments. Example
usage:

main: some_code

bl whereami

next_line_of_code

The return value of whereami should be the address of next line of code. Your job is to write
the code for the whereami function in the space below. Hint: keep it simple!

whereami: mfspr r3, LR

blr

5

5. Error correcting codes (13 points):

Global Warming Motors, Inc. has a problem with their extra large sport utility vehicles. The
transmissions tend to inadvertently shift gears, such as from “Park” into “Reverse”, often crushing
large tracts of old growth forest as a result. The source of problem is tracked down to bit errors
in the electronic communication from the shift lever to the transmission. Their engineers design
the following error correcting code:

Codeword Gear Selection
0000000 Park
0001111 Reverse
0110011 Neutral
1010101 Drive
1011010 Low
1100110 Bulldoze

The next eight questions apply to the particular code above.

(a) What is the Hamming distance for this code? 4

(b) This code can be used to detect single bit errors. ***TRUE*** FALSE

(c) This code can be used to detect double bit errors. ***TRUE*** FALSE

(d) This code can be used to detect triple bit errors. ***TRUE*** FALSE

(e) This code can be used to correct single bit errors. ***TRUE*** FALSE

(f) This code can be used to correct double bit errors. TRUE ***FALSE***

(g) This code can be used to correct triple bit errors. TRUE ***FALSE***

(h) This code can be used to correct single bit errors ***TRUE*** FALSE
and detect double bit errors at the same time.

The next two questions are about Hamming codes in general, not the particular code above.

(i) What is the minimum Hamming distance for a code to detect four errors? 5

(j) What is the minimum Hamming distance for a code to correct four errors? 9

6

7. Timers (24 points):

You are to implement a timer with the timer 1 channel of the PPC CPM module that has a
source clock of 2 MHz. The timer must time intervals as long as 2 minutes. The timer must
provide the best possible resolution that is a whole number of milliseconds. Be sure to show
your work for all parts of this question! For these requirements:

(a). What is the resolution of the timer in milliseconds?

2 minutes = 120 seconds. Timer allows a maximum of 216 counts.

120 seconds
216 = 0.001831 seconds = 1.831 milliseconds

This is the minimum timer resolution. Since a whole number of milliseconds were required,
round up to 2 milliseconds.

Check: 120 seconds
2 milliseconds

= 120,000milliseconds
2 milliseconds

= 60, 000

60,000 is less than 216, so this works.

(b). Given what you found in part (a), what is the longest possible time interval for the timer to
the nearest second?

2 milliseconds ∗ 216 = 131, 072 milliseconds = 131.072 seconds

Rounding to the nearest second, 131 seconds

(c). Based on what you found in part (a), what are the settings of the ICLK field and PS field
of the TMR1 register? Express the ICLK field in binary and the PS field in decimal.

ICLK = 10 divide by 16

PS = 249

(d). Based on what you found in part (a), what is the setting of the TRR1 register for a timer
interval of 2.1 seconds in decimal?

2.1 seconds = 2100 milliseconds

2100 milliseconds
2 milliseconds

= 1050

7

(e). What fields must be set in the TMR1 register to provide a periodic interrupt for the time
specified in the previous question and what are the values?

ORI = 1

FRR = 1

(f). Your sales people find out later that the customer needs a time resolution of 1 millisecond.
As the field application engineer, what compromise must you make to the timer specification and
what is the compromised value?

If the resolution must be changed from 2 milliseconds to 1 millisecond, the range will be
limited.

New range: 1 millisecond * 216 = 65,536 milliseconds = 65.536 seconds

(g). What other timer resources would you need to meet the customer’s needs without
compromise? You can answer in general terms, but specify the register and bit fields to enable
this.

You will need to cascade with one of the other counters to obtain the resolution and range
requirement.

TMR1, ICLK = 00

(h). For the new timer, what is the smallest possible time setting and the largest possible time
setting?

Smallest is 1 millisecond

Largest is 1 millisecond ∗ 216 ∗ 216 = 232 milliseconds = 4, 294, 967, 296 milliseconds =
4, 294, 967.296seconds

4,294,967.296 seconds
(60 seconds/minute)(60 minutes/hour)(24 hours/day)

= 49.7 days

8

7. Analog to Digital Conversion (24 points):

You are given an A to D converter similar to the ADC0808 except that it is a 4-bit device. The
non-linearity error is +/- 1/2 LSB. It has a resistor ladder as follows with the reference voltage
shown.

1/2 R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

3/2 R

+16V

9

(a). What is the quantization error in volts?

Quantization error = ±1
2
LSB = ±1

2
16 volts

24 = ±0.5 volts

(b). What are the transition voltages for the value 3 assuming the effects of non-linearity are
insignificant?

Transition voltages = n ∗ LSB± 1
2
LSB

In this case, n = 3, LSB = 1 volt

Thus, transition voltages = 3 ∗ 1 volt± 1
2
∗ 1 volt = 3± 0.5 volts = 2.5 volts and 3.5 volts

(c). What are the transition voltages for the value 3 assuming the effects of non-linearity are
significant?

Transition voltages = quantization transition voltages ±1
2

LSB
= 2.5 ± 0.5 volts and 3.5 ± 0.5 volts
= 2.0 to 3.0 volts and 3.0 to 4.0 volts

(d). In the lab you measure the transition voltage for count value 4 and 5. How large would you
expect the difference between these two values to be before you suspected a problem with your
measurement? Express your answer in volts.

The differential non-linearity = 2V
However, the maximum absolute difference between count 4:
3.5± 0.5 to 4.5± 0.5
and count 5:
4.5± 0.5 to 5.5± 0.5
= |3.0− 6.0| = 3 volts
So, anything greater then 3 volts would be suspect.

10

