READ AND FOLLOW THESE INSTRUCTIONS.

- Do not begin until you are told to do so.
- You have 50 minutes; budget your time. The questions are not of equal weight; do not spend too much time on a question that is not worth many points.
- Read through all of the questions before starting to work.
- This exam is **closed notes**. You may use the MPC823 data book, the "PowerPC Programming Pocket Book", and/or a printout of Appendix F from the green book as reference material. You may *not* share reference materials with other students.

Name: _____

Uniqname: _____

Honor Code statement: I have neither given nor received aid on this exam.

Signature: _____

Question	Points	Score
1	35	
2	35	
3	30	
Total	100	

(35 pts) You are given a 32-bit hardware register built from 32 D flip-flops. The operation of the individual flip-flops and their interconnection are provided on the following pages. Using this register, construct a 32-bit word-addressable (not byte-addressable) memory location for the MPC823 at address 0x02600000. To minimize the address decoding logic, decode only A[6:10]. Use the space below to draw your circuit. All of the MPC823 bus signals you need to worry about are indicated on the left, and the register to interface is shown on the right. (If you need them, the basic MPC823 bus timing diagrams are found on pages 13-10 and 13-13 of the MPC823 data book.)

 $\overline{\mathrm{TA}}$ —

EECS 373 Winter 1999 Exam 1

Internal schematic for 32-bit register

EECS 373 Winter 1999 Exam 1

2. (35 pts) Below is the edited listing file from an assembly-language program. Use it to answer the following questions. *Read all of the questions before you begin.*

						.data	
00003000						.equ	stack, 0x3000
00002000	45	45	43	53	strptr:	.asciz	"EECS373 RULES!"
	33	37	33	20	-		
	52	55	4 C	45			
	52	21	0.0	15			
	55	2 I	00			++	
		~ ~	~ ~			.text	
00001000	3C	20	00	00	_start:	lis	rl, stack@h
00001004	60	21	30	00		ori	rl, rl, stack@l
00001008	3C	60	00	00		lis	r3, strptr@h
0000100C	60	63	20	00		ori	r3, r3, strptr@l
00001010	48	00	00	09		bl	funcl
00001014	48	00	00	00	done:	b	done
	-						
00001018	94	21	ਸ਼ਾਸ	ΨO	func1:	at will	r1 - 16(r1)
00001010		∆⊥ ∩ 0	0.0	76	runcr.	mflr	r1, 10(11)
00001010	70	00	02	AU 0.4			10
00001020	90	0 I	00	04		STW	rU, 4(r1)
00001024	93	CT	00	08		stw	r30, 8(r1)
00001028	93	E1	00	0C		stw	r31, 12(r1)
0000102C	3B	ЕЗ	FF	FF		addi	r31, r3, -1
00001030	8F	DF	00	01	flloop:	lbzu	r30, 1(r31)
00001034	2C	1E	00	00		cmpwi	r30, 0
00001038	41	82	00	20		beq	fldone
0000103C	7F	C3	F3	78		mr	r3, r30
00001040	48	0.0	0.0	31		bl	func?
00001044	20	02	00	00		amowi	r2 0
00001044	2C 11	03		00 170		bog	13, 0 fllcom
00001048	41 25	02 55	F F	E O		ped '''	11100p
0000104C	3B	DE	00	20		addi	r30, r30, 0x20
00001050	9B	DF	00	00		stb	r30, 0(r31)
00001054	4B	FF	FF	DC		b	flloop
		_		_		_	
00001058	83	El	00	0C	fldone:	lwz	r31, 12(r1)
0000105C	83	C1	00	08		lwz	r30, 8(r1)
00001060	80	01	00	04		lwz	r0, 4(r1)
00001064	7C	08	03	Аб		mtlr	r0
00001068	38	21	00	10		addi	rl, rl, 16
0000106C	4E	80	00	20		blr	
00001070	7C	64	1в	78	func2:	mr	r10, r3
00001074	38	60	00	00		li	r3, 0
00001078	20	04	00	41		cmpwi	r10 0x41
00001070	ΔC Δ1	2 A	00	10		Sm₽w⊥ hl+	$f^{2}done$
00001070	77 72	00	00	T 0			
00001080	2C	04	00	ЭА		Cuipwi	IIU, UX5a
00001084	41	81	00	08		bgt	t 2done
00001088	38	60	00	01		⊥i	r3, 1
0000108C	4E	80	00	20	f2done:	blr	

a. (4 pts) Step through the first five instructions (starting at _start). After executing exactly five instructions, what are the values of the following registers?

РС	R1	R3	LR

b. (3 pts) Continue stepping through the instructions through the stw r31, 12(r1) instruction at 0x1028. After executing this instruction, what are the contents of the stack pointer and the first two locations in the stack frame?

Address	Contents
R1+4	
R1 = 0x	

- c. (2 pts) What is the name for the sequence of instructions from 0x1018 to 0x1028?
- d. (5 pts) Continue stepping until you reach the bl func2 at address 0x1040. *After* executing this instruction, what are the values of the following registers?

РС	R3	R30	R31	LR

- e. (3 pts) Func2 takes a single argument and returns either 0 or 1. For what range of argument values will func2 return 1? Intuitively, what does the return value of this function indicate? (Hint: use the ASCII table on the next page.)
- f. (3 pts) What does func1 do if func2 returns 1?
- g. (5 pts) What string will be stored at strptr after func1 returns?

(parts h and i are on the next page)

- h. (5 pts) Internally, func1 uses r30 and r31, and func2 uses r10. Func1 saves and restores the old values of the registers it uses, but func2 doesn't. Why?
- i. (5 pts) Imagine that you rewrite func1 to use r10 instead of r30. In addition to simply changing the register names in the instructions, what else would you have to do to make func1 work correctly again? You don't need to write any code, just describe any necessary changes.

ASCII table: Codes 0x00 through 0x1F (NUL to US) and code 0x7F (DEL) are non-printable control characters. Codes 0x20 through 0x7E are printable characters; 0x20 is a space (' ').

3. (30 pts) Here is an excerpt from the Unix man page for the C library function *strpbrk*:

NAME

strpbrk - search a string for any of a set of characters

SYNOPSIS

char *strpbrk(char *s, char *accept);

DESCRIPTION

The strpbrk() function locates the first occurrence in the string \underline{s} of any of the characters in the string <u>accept</u>.

RETURN VALUE

The strpbrk() function returns a pointer to the character in \underline{s} that matches one of the characters in <u>accept</u>.

For example, if s is the address of the string "Hello world", and accept is the address of the string "rxoq", then strpbrk(s, accept) should return the address of the 'o' at the end of "Hello". Recall that the end of a string in C is marked by a null (0) byte.

Write a simple PowerPC assembly-language version of the strpbrk function. Use the ABI conventions discussed in class. Focus on correctness rather than performance. If you run out of space, continue on the back of this sheet.