
Chapter 4. Addressing Modes and Instruction Set Summary 4-41

4.2.4 Branch and Flow Control Instructions
Some branch instructions can redirect instruction execution conditionally based on the
value of bits in the CR. When the processor encounters one of these instructions, it scans
the execution pipelines to determine whether an instruction in progress may affect the
particular CR bit. If no interlock is found, the branch can be resolved immediately by
checking the bit in the CR and taking the action defined for the branch instruction.

If an interlock is detected, the branch is considered unresolved and the direction of the
branch may either be predicted using the y bit (as described in Table 4-20) or by using
dynamic prediction. The interlock is monitored while instructions are fetched for the
predicted branch. When the interlock is cleared, the processor determines whether the
prediction was correct based on the value of the CR bit. If the prediction is correct, the
branch is considered completed and instruction fetching continues. If the prediction is
incorrect, the fetched instructions are purged, and instruction fetching continues along the
alternate path.

4.2.4.1 Branch Instruction Address Calculation
Branch instructions can alter the sequence of instruction execution. Instruction addresses
are always assumed to be word aligned; the PowerPC processors ignore the two low-order
bits of the generated branch target address.

Branch instructions compute the effective address (EA) of the next instruction address
using the following addressing modes:

• Branch relative
• Branch conditional to relative address
• Branch to absolute address
• Branch conditional to absolute address
• Branch conditional to link register
• Branch conditional to count register

Store Floating-
Point Double
with Update
Indexed

stfdux frS,rA,rB The EA is the sum (rA) + (rB).

The contents of frS are stored into the double word in memory
addressed by EA.

The EA is placed into register rA.

Store Floating-
Point as
Integer Word
Indexed

stfiwx frS,rA,rB The EA is the sum (rA|0) + (rB).

The contents of the low-order 32 bits of frS are stored, without
conversion, into the word in memory addressed by the EA.

Note: The stfiwx instruction is defined as optional by the PowerPC
architecture to ensure backwards compatibility with earlier
processors; however, it will likely be required for subsequent
PowerPC processors.

Table 4-19. Floating-Point Store Instructions (Continued)

Name Mnemonic Operand Syntax Operation

4-42 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

In the 32-bit mode of a 64-bit implementation, the final step in the address computation is
clearing the high-order 32 bits of the target address.

4.2.4.1.1 Branch Relative Addressing Mode
Instructions that use branch relative addressing generate the next instruction address by
sign extending and appending 0b00 to the immediate displacement operand LI, and adding
the resultant value to the current instruction address. Branches using this addressing mode
have the absolute addressing option disabled (AA field, bit 30, in the instruction
encoding = 0). The link register (LR) update option can be enabled (LK field, bit 31, in the
instruction encoding = 1). This option causes the effective address of the instruction
following the branch instruction to be placed in the LR.

Figure 4-6 shows how the branch target address is generated when using the branch relative
addressing mode.

Figure 4-6. Branch Relative Addressing

4.2.4.1.2 Branch Conditional to Relative Addressing Mode
If the branch conditions are met, instructions that use the branch conditional to relative
addressing mode generate the next instruction address by sign extending and appending
0b00 to the immediate displacement operand (BD) and adding the resultant value to the
current instruction address. Branches using this addressing mode have the absolute
addressing option disabled (AA field, bit 30, in the instruction encoding = 0). The link
register update option can be enabled (LK field, bit 31, in the instruction encoding = 1).
This option causes the effective address of the instruction following the branch instruction
to be placed in the LR.

Figure 4-7 shows how the branch target address is generated when using the branch
conditional relative addressing mode.

0 5 6 29 30 31

18 LI AA LK

0 63

Branch Target Address

Instruction Encoding:

+
0 63

Current Instruction Address

0 37 38 61 62 63

LI 0 0Sign Extension

Reserved

Chapter 4. Addressing Modes and Instruction Set Summary 4-43

Figure 4-7. Branch Conditional Relative Addressing

4.2.4.1.3 Branch to Absolute Addressing Mode
Instructions that use branch to absolute addressing mode generate the next instruction
address by sign extending and appending 0b00 to the LI operand. Branches using this
addressing mode have the absolute addressing option enabled (AA field, bit 30, in the
instruction encoding = 1). The link register update option can be enabled (LK field, bit 31,
in the instruction encoding = 1). This option causes the effective address of the instruction
following the branch instruction to be placed in the LR.

Figure 4-8 shows how the branch target address is generated when using the branch to
absolute addressing mode.

Figure 4-8. Branch to Absolute Addressing

0 5 6 1011 15 16 30 31

16 BO BI BD AA LK

Yes

0 63

Branch Target Address

Instruction Encoding:

No

+
0 63

Current Instruction Address

0 63

Next Sequential Instruction Address

0 47 48 61 62 63

Sign Extension BD 0 0

Condition
Met?

Reserved

0 5 6 29 30 31

18 LI AA LK

0 3738 61 62 63

0 61 62 63

Branch Target Address

Instruction Encoding:

LI 0 0Sign Extension

0 0

4-44 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.2.4.1.4 Branch Conditional to Absolute Addressing Mode
If the branch conditions are met, instructions that use the branch conditional to absolute
addressing mode generate the next instruction address by sign extending and appending
0b00 to the BD operand. Branches using this addressing mode have the absolute addressing
option enabled (AA field, bit 30, in the instruction encoding = 1). The link register update
option can be enabled (LK field, bit 31, in the instruction encoding = 1). This option causes
the effective address of the instruction following the branch instruction to be placed in the
LR.

Figure 4-9 shows how the branch target address is generated when using the branch
conditional to absolute addressing mode.

Figure 4-9. Branch Conditional to Absolute Addressing

0 5 6 1011 15 16 29 30 31

16 BO BI BD AA LK

0 47 48 61 62 63

0 61 62 63

Branch Target Address

Instruction Encoding:

No
0 63

Next Sequential Instruction Address

Sign Extension BD 0 0

Condition
Met?

Yes

0 0

Chapter 4. Addressing Modes and Instruction Set Summary 4-45

4.2.4.1.5 Branch Conditional to Link Register Addressing Mode
If the branch conditions are met, the branch conditional to link register instruction generates
the next instruction address by fetching the contents of the LR and clearing the two low-
order bits to zero. The link register update option can be enabled (LK field, bit 31, in the
instruction encoding = 1). This option causes the effective address of the instruction
following the branch instruction to be placed in the LR.

Figure 4-10 shows how the branch target address is generated when using the branch
conditional to link register addressing mode.

Figure 4-10. Branch Conditional to Link Register Addressing

0 5 6 10 11 15 16 20 21 30 31

Condition
Met?

0 0

62 63

LR

0 61

0 63

Branch Target Address

Instruction Encoding:

No
0 63

Next Sequential Instruction Address

Yes

19 BO BI 0 0 0 0 0 16 LK

||

Reserved

4-46 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.2.4.1.6 Branch Conditional to Count Register Addressing Mode
If the branch conditions are met, the branch conditional to count register instruction
generates the next instruction address by fetching the contents of the count register (CTR)
and clearing the two low-order bits to zero. The link register update option can be enabled
(LK field, bit 31, in the instruction encoding = 1). This option causes the effective address
of the instruction following the branch instruction to be placed in the LR.

Figure 4-11 shows how the branch target address is generated when using the branch
conditional to count register addressing mode.

Figure 4-11. Branch Conditional to Count Register Addressing

0 0

62 63

CTR

0 61

0 63

Branch Target Address

Instruction Encoding:

Condition
Met?

No

Yes

0 63

Next Sequential Instruction Address

0 5 6 1011 15 16 20 21 30 31

19 BO BI 00000 528 LK

||

Reserved

Chapter 4. Addressing Modes and Instruction Set Summary 4-47

4.2.4.2 Conditional Branch Control
For branch conditional instructions, the BO operand specifies the conditions under which
the branch is taken. The first four bits of the BO operand specify how the branch is affected
by or affects the condition and count registers. The fifth bit, shown in Table 4-20 as having
the value y, is used by some PowerPC implementations for branch prediction as described
below.

The encodings for the BO operands are shown in Table 4-20.

The branch always encoding of the BO operand does not have a y bit.

Clearing the y bit indicates a predicted behavior for the branch instruction as follows:

• For bcx with a negative value in the displacement operand, the branch is taken.

• In all other cases (bcx with a non-negative value in the displacement operand, bclrx,
or bcctrx), the branch is not taken.

Setting the y bit reverses the preceding indications.

The sign of the displacement operand is used as described above even if the target is an
absolute address. The default value for the y bit should be 0, and should only be set to 1 if
software has determined that the prediction corresponding to y = 1 is more likely to be
correct than the prediction corresponding to y = 0. Software that does not compute branch
predictions should clear the y bit.

Table 4-20. BO Operand Encodings

BO Description

0000y Decrement the CTR, then branch if the decremented CTR ≠ 0 and the condition is FALSE.

0001y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is FALSE.

001zy Branch if the condition is FALSE.

0100y Decrement the CTR, then branch if the decremented CTR ≠ 0 and the condition is TRUE.

0101y Decrement the CTR, then branch if the decremented CTR = 0 and the condition is TRUE.

011zy Branch if the condition is TRUE.

1z00y Decrement the CTR, then branch if the decremented CTR ≠ 0.

1z01y Decrement the CTR, then branch if the decremented CTR = 0.

1z1zz Branch always.

In this table, z indicates a bit that is ignored.
Note that the z bits should be cleared, as they may be assigned a meaning in some future version of the
PowerPC architecture.

The y bit provides a hint about whether a conditional branch is likely to be taken, and may be used by some
PowerPC implementations to improve performance.

4-48 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

In most cases, the branch should be predicted to be taken if the value of the following
expression is 1, and predicted to fall through if the value is 0.

((BO[0] & BO[2]) | S) ≈ BO[4]

In the expression above, S (bit 16 of the branch conditional instruction coding) is the sign
bit of the displacement operand if the instruction has a displacement operand and is 0 if the
operand is reserved. BO[4] is the y bit, or 0 for the branch always encoding of the BO
operand. (Advantage is taken of the fact that, for bclrx and bcctrx, bit 16 of the instruction
is part of a reserved operand and therefore must be 0.)

The 5-bit BI operand in branch conditional instructions specifies which of the 32 bits in the
CR represents the condition to test.

When the branch instructions contain immediate addressing operands, the target addresses
can be computed sufficiently ahead of the branch instruction that instructions can be
fetched along the target path. If the branch instructions use the link and count registers,
instructions along the target path can be fetched if the link or count register is loaded
sufficiently ahead of the branch instruction.

Branching can be conditional or unconditional, and optionally a branch return address is
created by the access of the effective address of the instruction following the branch
instruction in the LR after the branch target address has been computed. This is done
regardless of whether the branch is taken. Some processors may keep a stack of the link
register values most recently set by branch and link instructions, with the possible
exception of the form shown below for obtaining the address of the next instruction. To
benefit from this stack, the following programming conventions should be used.

In the following examples, let A, B, and Glue represent subroutine labels:

• Obtaining the address of the next instruction– use the following form of branch and
link:

bcl 20,31,$+4

• Loop counts:

Keep them in the count register, and use one of the branch conditional instructions
to decrement the count and to control branching (for example, branching back to the
start of a loop if the decremented counter value is nonzero).

• Computed GOTOs, case statements, etc.:

Use the count register to hold the address to branch to, and use the bcctr instruction
with the link register option disabled (LK = 0) to branch to the selected address.

Chapter 4. Addressing Modes and Instruction Set Summary 4-49

• Direct subroutine linkage—where A calls B and B returns to A. The two branches
should be as follows:

— A calls B: use a branch instruction that enables the link register (LK = 1).

— B returns to A: use the bclr instruction with the link register option disabled
(LK = 0) (the return address is in, or can be restored to, the link register).

• Indirect subroutine linkage:

Where A calls Glue, Glue calls B, and B returns to A rather than to Glue. (Such a
calling sequence is common in linkage code used when the subroutine that the
programmer wants to call, here B, is in a different module from the caller: the binder
inserts “glue” code to mediate the branch.) The three branches should be as follows:

— A calls Glue: use a branch instruction that sets the link register with the link
register option enabled (LK = 1).

— Glue calls B: place the address of B in the count register, and use the bcctr
instruction with the link register option disabled (LK = 0).

— B returns to A: use the bclr instruction with the link register option disabled
(LK = 0) (the return address is in, or can be restored to, the link register).

4.2.4.3 Branch Instructions
Table 4-21 describes the branch instructions provided by the PowerPC processors.

Table 4-21. Branch Instructions

Name Mnemonic Operand Syntax Operation

Branch b
ba
bl
bla

target_addr b Branch. Branch to the address computed as the sum of the
immediate address and the address of the current instruction.

ba Branch Absolute. Branch to the absolute address specified.
bl Branch then Link. Branch to the address computed as the sum

of the immediate address and the address of the current
instruction. The instruction address following this instruction is
placed into the link register (LR).

bla Branch Absolute then Link. Branch to the absolute address
specified. The instruction address following this instruction is
placed into the LR.

Branch
Conditional

bc
bca
bcl
bcla

BO,BI,target_addr The BI operand specifies the bit in the CR to be used as the condition
of the branch. The BO operand is used as described in Table 4-20.

bc Branch Conditional. Branch conditionally to the address
computed as the sum of the immediate address and the
address of the current instruction.

bca Branch Conditional Absolute. Branch conditionally to the
absolute address specified.

bcl Branch Conditional then Link. Branch conditionally to the
address computed as the sum of the immediate address and
the address of the current instruction. The instruction address
following this instruction is placed into the LR.

bcla Branch Conditional Absolute then Link. Branch conditionally to
the absolute address specified. The instruction address
following this instruction is placed into the LR.

4-50 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.2.4.4 Simplified Mnemonics for Branch Processor Instructions
To simplify assembly language programming, a set of simplified mnemonics and symbols
is provided for the most frequently used forms of branch conditional, compare, trap, rotate
and shift, and certain other instructions. See Appendix F, “Simplified Mnemonics,” for a
list of simplified mnemonic examples.

4.2.4.5 Condition Register Logical Instructions
Condition register logical instructions, shown in Table 4-22, and the Move Condition
Register Field (mcrf) instruction are also defined as flow control instructions.

Note that if the LR update option is enabled for any of these instructions, the PowerPC
architecture defines these forms of the instructions as invalid.

Branch
Conditional
to Link
Register

bclr
bclrl

BO,BI The BI operand specifies the bit in the CR to be used as the condition
of the branch. The BO operand is used as described in Table 4-20.

bclr Branch Conditional to Link Register. Branch conditionally to
the address in the LR.

bclrl Branch Conditional to Link Register then Link. Branch
conditionally to the address specified in the LR. The instruction
address following this instruction is then placed into the LR.

Branch
Conditional
to Count
Register

bcctr
bcctrl

BO,BI The BI operand specifies the bit in the CR to be used as the condition
of the branch. The BO operand is used as described in Table 4-20.

bcctr Branch Conditional to Count Register. Branch conditionally to
the address specified in the count register.

bcctrl Branch Conditional to Count Register then Link. Branch
conditionally to the address specified in the count register.
The instruction address following this instruction is placed into
the LR.

Note: If the “decrement and test CTR” option is specified (BO[2] = 0),
the instruction form is invalid.

Table 4-22. Condition Register Logical Instructions

Name Mnemonic Operand Syntax Operation

Condition
Register AND

crand crbD,crbA,crbB The CR bit specified by crbA is ANDed with the CR bit specified
by crbB. The result is placed into the CR bit specified by crbD.

Condition
Register OR

cror crbD,crbA,crbB The CR bit specified by crbA is ORed with the CR bit specified
by crbB. The result is placed into the CR bit specified by crbD.

Condition
Register XOR

crxor crbD,crbA,crbB The CR bit specified by crbA is XORed with the CR bit specified
by crbB. The result is placed into the CR bit specified by crbD.

Condition
Register NAND

crnand crbD,crbA,crbB The CR bit specified by crbA is ANDed with the CR bit specified
by crbB. The complemented result is placed into the CR bit
specified by crbD.

Table 4-21. Branch Instructions (Continued)

Name Mnemonic Operand Syntax Operation

Chapter 4. Addressing Modes and Instruction Set Summary 4-51

4.2.4.6 Trap Instructions
The trap instructions shown in Table 4-23 are provided to test for a specified set of
conditions. If any of the conditions tested by a trap instruction are met, the system trap
handler is invoked. If the tested conditions are not met, instruction execution continues
normally. See Appendix F, “Simplified Mnemonics,” for a complete set of simplified
mnemonics.

Condition
Register NOR

crnor crbD,crbA,crbB The CR bit specified by crbA is ORed with the CR bit specified
by crbB. The complemented result is placed into the CR bit
specified by crbD.

Condition
Register
Equivalent

creqv crbD,crbA, crbB The CR bit specified by crbA is XORed with the CR bit specified
by crbB. The complemented result is placed into the CR bit
specified by crbD.

Condition
Register AND
with Complement

crandc crbD,crbA, crbB The CR bit specified by crbA is ANDed with the complement of
the CR bit specified by crbB and the result is placed into the CR
bit specified by crbD.

Condition
Register OR with
Complement

crorc crbD,crbA, crbB The CR bit specified by crbA is ORed with the complement of
the CR bit specified by crbB and the result is placed into the CR
bit specified by crbD.

Move Condition
Register Field

mcrf crfD,crfS The contents of crfS are copied into crfD. No other condition
register fields are changed.

Table 4-23. Trap Instructions

Name Mnemonic
Operand
Syntax

Operand Syntax

Trap Word
Immediate

twi TO,rA,SIMM The contents of rA are compared with the sign-extended SIMM operand.
If any bit in the TO operand is set and its corresponding condition is met
by the result of the comparison, the system trap handler is invoked.

Trap Word tw TO,rA,rB The contents of rA are compared with the contents of rB. If any bit in the
TO operand is set and its corresponding condition is met by the result of
the comparison, the system trap handler is invoked.

Table 4-22. Condition Register Logical Instructions (Continued)

Name Mnemonic Operand Syntax Operation

