
Chapter 4. Addressing Modes and Instruction Set Summary 4-29

4.2.3.1 Integer Load and Store Address Generation
Integer load and store operations generate effective addresses using register indirect with
immediate index mode, register indirect with index mode, or register indirect mode. See
Section 4.1.4.2, “Effective Address Calculation,” for information about calculating
effective addresses. Note that in some implementations, operations that are not naturally
aligned may suffer performance degradation. Refer to Section 6.4.6.1, “Integer Alignment
Exceptions,” for additional information about load and store address alignment exceptions.

4.2.3.1.1 Register Indirect with Immediate Index Addressing for Integer
Loads and Stores

Instructions using this addressing mode contain a signed 16-bit immediate index
(d operand) which is sign extended, and added to the contents of a general-purpose register
specified in the instruction (rA operand) to generate the effective address. If the rA field of
the instruction specifies r0, a value of zero is added to the immediate index (d operand) in
place of the contents of r0. The option to specify rA or 0 is shown in the instruction
descriptions as (rA|0).

Figure 4-1 shows how an effective address is generated when using register indirect with
immediate index addressing.

.

Figure 4-1. Register Indirect with Immediate Index Addressing for Integer
Loads/Stores

No

0 47 48 63

Sign Extension d

0 63

GPR (rA)

0

0 63

GPR (rD/rS)
Store
Load

Yes

Instruction Encoding:
0 5 6 1011 15 16 31

Opcode rD/rS rA d

+
0 63

Effective Address

rA=0?

Memory
Interface

4-30 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.2.3.1.2 Register Indirect with Index Addressing for Integer Loads and
Stores

Instructions using this addressing mode cause the contents of two general-purpose registers
(specified as operands rA and rB) to be added in the generation of the effective address. A
zero in place of the rA operand causes a zero to be added to the contents of the general-
purpose register specified in operand rB (or the value zero for lswi and stswi instructions).
The option to specify rA or 0 is shown in the instruction descriptions as (rA|0).

Figure 4-2 shows how an effective address is generated when using register indirect with
index addressing.

Figure 4-2. Register Indirect with Index Addressing for Integer Loads/Stores

4.2.3.1.3 Register Indirect Addressing for Integer Loads and Stores
Instructions using this addressing mode use the contents of the general-purpose register
specified by the rA operand as the effective address. A zero in the rA operand causes an
effective address of zero to be generated. The option to specify rA or 0 is shown in the
instruction descriptions as (rA|0).

Figure 4-3 shows how an effective address is generated when using register indirect
addressing.

No

0 63

GPR (rA)

0

+

0 63

GPR (rD/rS)
Memory
Interface

Store
Load

Yes

0 63

GPR (rB)

Instruction Encoding:

rA=0?

0 63

Effective Address

0 5 6 1011 15 16 20 21 30 31

Opcode rD/rS rA rB Subopcode 0Reserved

Chapter 4. Addressing Modes and Instruction Set Summary 4-31

Figure 4-3. Register Indirect Addressing for Integer Loads/Stores

4.2.3.2 Integer Load Instructions
For integer load instructions, the byte, half word, word, or double word addressed by the
EA (effective address) is loaded into rD. Many integer load instructions have an update
form, in which rA is updated with the generated effective address. For these forms, if rA ≠
0 and rA ≠ rD (otherwise invalid), the EA is placed into rA and the memory element (byte,
half word, word, or double word) addressed by the EA is loaded into rD. Note that the
PowerPC architecture defines load with update instructions with operand rA = 0 or
rA = rD as invalid forms.

The default byte and bit ordering is big-endian in the PowerPC architecture; see
Section 3.1.2, “Byte Ordering,” for information about little-endian byte ordering.

Note that in some implementations of the architecture, the load word algebraic instructions
(lha, lhax, lwa, lwax) and the load with update (lbzu, lbzux, lhzu, lhzux, lhau, lhaux,
lwaux, ldu, ldux) instructions may execute with greater latency than other types of load
instructions. Moreover, the load with update instructions may take longer to execute in
some implementations than the corresponding pair of a nonupdate load followed by an add
instruction.

No

Store
Load

Yes
0 63

0 0

Instruction Encoding:
0 5 6 10 11 15 16 20 21 30 31

rA=0?

0 63

GPR (rA)

0 63

Effective Address

Opcode rD/rS rA NB Subopcode 0

0 63

GPR (rD/rS)
Memory
Interface

Reserved

4-32 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

Table 4-13 summarizes the integer load instructions.

Table 4-13. Integer Load Instructions

Name Mnemonic
Operand
 Syntax

Operation

Load Byte and
Zero

lbz rD,d(rA) The EA is the sum (rA|0) + d. The byte in memory addressed by the EA is
loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared.

Load Byte and
Zero Indexed

lbzx rD,rA,rB The EA is the sum (rA|0) + (rB). The byte in memory addressed by the EA is
loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared.

Load Byte and
Zero with
Update

lbzu rD,d(rA) The EA is the sum (rA) + d. The byte in memory addressed by the EA is
loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared. The EA is placed into rA.

Load Byte and
Zero with
Update Indexed

lbzux rD,rA,rB The EA is the sum (rA) + (rB). The byte in memory addressed by the EA is
loaded into the low-order eight bits of rD. The remaining bits in rD are
cleared. The EA is placed into rA.

Load Half Word
and Zero

lhz rD,d(rA) The EA is the sum (rA|0) + d. The half word in memory addressed by the EA
is loaded into the low-order 16 bits of rD. The remaining bits in rD are
cleared.

Load Half Word
and Zero
Indexed

lhzx rD,rA,rB The EA is the sum (rA|0) + (rB). The half word in memory addressed by the
EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are
cleared.

Load Half Word
and Zero with
Update

lhzu rD,d(rA) The EA is the sum (rA) + d. The half word in memory addressed by the EA is
loaded into the low-order 16 bits of rD. The remaining bits in rD are cleared.
The EA is placed into rA.

Load Half Word
and Zero with
Update Indexed

lhzux rD,rA,rB The EA is the sum (rA) + (rB). The half word in memory addressed by the EA
is loaded into the low-order 16 bits of rD. The remaining bits in rD are
cleared. The EA is placed into rA.

Load Half Word
Algebraic

lha rD,d(rA) The EA is the sum (rA|0) + d. The half word in memory addressed by the EA
is loaded into the low-order 16 bits of rD. The remaining bits in rD are filled
with a copy of the most significant bit of the loaded half word.

Load Half Word
Algebraic
Indexed

lhax rD,rA,rB The EA is the sum (rA|0) + (rB). The half word in memory addressed by the
EA is loaded into the low-order 16 bits of rD. The remaining bits in rD are
filled with a copy of the most significant bit of the loaded half word.

Load Half Word
Algebraic with
Update

lhau rD,d(rA) The EA is the sum (rA) + d. The half word in memory addressed by the EA is
loaded into the low-order 16 bits of rD. The remaining bits in rD are filled with
a copy of the most significant bit of the loaded half word. The EA is placed
into rA.

Load Half Word
Algebraic with
Update Indexed

lhaux rD,rA,rB The EA is the sum (rA) + (rB). The half word in memory addressed by the EA
is loaded into the low-order 16 bits of rD. The remaining bits in rD are filled
with a copy of the most significant bit of the loaded half word. The EA is
placed into rA.

Load Word and
Zero

lwz rD,d(rA) The EA is the sum (rA|0) + d. The word in memory addressed by the EA is
loaded into rD.

Load Word and
Zero Indexed

lwzx rD,rA,rB The EA is the sum (rA|0) + (rB). The word in memory addressed by the EA is
loaded into rD.

Chapter 4. Addressing Modes and Instruction Set Summary 4-33

4.2.3.3 Integer Store Instructions
For integer store instructions, the contents of rS are stored into the byte, half word, word or
double word in memory addressed by the EA (effective address). Many store instructions
have an update form, in which rA is updated with the EA. For these forms, the following
rules apply:

• If rA ≠ 0, the effective address is placed into rA.

• If rS = rA, the contents of register rS are copied to the target memory element, then
the generated EA is placed into rA (rS).

In general, the PowerPC architecture defines a sequential execution model. However, when
a store instruction modifies a memory location that contains an instruction, software
synchronization is required to ensure that subsequent instruction fetches from that location
obtain the modified version of the instruction.

If a program modifies the instructions it intends to execute, it should call the appropriate
system library program before attempting to execute the modified instructions to ensure
that the modifications have taken effect with respect to instruction fetching.

The PowerPC architecture defines store with update instructions with rA = 0 as an invalid
form. In addition, it defines integer store instructions with the CR update option enabled
(Rc field, bit 31, in the instruction encoding = 1) to be an invalid form. Table 4-14 provides
a summary of the integer store instructions.

Load Word and
Zero with
Update

lwzu rD,d(rA) The EA is the sum (rA) + d. The word in memory addressed by the EA is
loaded into rD. The EA is placed into rA.

Load Word and
Zero with
Update Indexed

lwzux rD,rA,rB The EA is the sum (rA) + (rB). The word in memory addressed by the EA is
loaded into rD. The EA is placed into rA.

Table 4-14. Integer Store Instructions

Name Mnemonic
Operand
Syntax

Operation

Store Byte stb rS,d(rA) The EA is the sum (rA|0) + d. The contents of the low-order eight bits
of rS are stored into the byte in memory addressed by the EA.

Store Byte Indexed stbx rS,rA,rB The EA is the sum (rA|0) + (rB). The contents of the low-order eight
bits of rS are stored into the byte in memory addressed by the EA.

Store Byte with
Update

stbu rS,d(rA) The EA is the sum (rA) + d. The contents of the low-order eight bits of
rS are stored into the byte in memory addressed by the EA. The EA is
placed into rA.

Table 4-13. Integer Load Instructions (Continued)

Name Mnemonic
Operand
 Syntax

Operation

4-34 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

4.2.3.4 Integer Load and Store with Byte-Reverse Instructions
Table 4-15 describes integer load and store with byte-reverse instructions. Note that in
some PowerPC implementations, load byte-reverse instructions may have greater latency
than other load instructions.

When used in a PowerPC system operating with the default big-endian byte order, these
instructions have the effect of loading and storing data in little-endian order. Likewise,
when used in a PowerPC system operating with little-endian byte order, these instructions
have the effect of loading and storing data in big-endian order. For more information about
big-endian and little-endian byte ordering, see Section 3.1.2, “Byte Ordering.”

Store Byte with
Update Indexed

stbux rS,rA,rB The EA is the sum (rA) + (rB). The contents of the low-order eight bits
of rS are stored into the byte in memory addressed by the EA. The EA
is placed into rA.

Store Half Word sth rS,d(rA) The EA is the sum (rA|0) + d. The contents of the low-order 16 bits of
rS are stored into the half word in memory addressed by the EA.

Store Half Word
Indexed

sthx rS,rA,rB The EA is the sum (rA|0) + (rB). The contents of the low-order 16 bits
of rS are stored into the half word in memory addressed by the EA.

Store Half Word with
Update

sthu rS,d(rA) The EA is the sum (rA) + d. The contents of the low-order 16 bits of rS
are stored into the half word in memory addressed by the EA. The EA
is placed into rA.

Store Half Word with
Update Indexed

sthux rS,rA,rB The EA is the sum (rA) + (rB). The contents of the low-order 16 bits of
rS are stored into the half word in memory addressed by the EA. The
EA is placed into rA.

Store Word stw rS,d(rA) The EA is the sum (rA|0) + d. The contents of rS are stored into the
word in memory addressed by the EA.

Store Word Indexed stwx rS,rA,rB The EA is the sum (rA|0) + (rB). The contents of rS are stored into the
word in memory addressed by the EA.

Store Word with
Update

stwu rS,d(rA) The EA is the sum (rA) + d. The contents of rS are stored into the
word in memory addressed by the EA. The EA is placed into rA.

Store Word with
Update Indexed

stwux rS,rA,rB The EA is the sum (rA) + (rB). The contents of rS are stored into the
word in memory addressed by the EA. The EA is placed into rA.

Table 4-14. Integer Store Instructions (Continued)

Name Mnemonic
Operand
Syntax

Operation

Chapter 4. Addressing Modes and Instruction Set Summary 4-35

4.2.3.5 Integer Load and Store Multiple Instructions
The load/store multiple instructions are used to move blocks of data to and from the GPRs.
The load multiple and store multiple instructions may have operands that require memory
accesses crossing a 4-Kbyte page boundary. As a result, these instructions may be
interrupted by a DSI exception associated with the address translation of the second page.
Table 4-16 summarizes the integer load and store multiple instructions.

In the load/store multiple instructions, the combination of the EA and rD (rS) is such that
the low-order byte of GPR31 is loaded from or stored into the last byte of an aligned quad
word in memory; if the effective address is not correctly aligned, it may take significantly
longer to execute.

In some PowerPC implementations operating with little-endian byte order, execution of an
lmw or stmw instruction causes the system alignment error handler to be invoked; see
Section 3.1.2, “Byte Ordering,” for more information.

Table 4-15. Integer Load and Store with Byte-Reverse Instructions

Name Mnemonic
Operand
 Syntax

Operation

Load Half
Word Byte-
Reverse
Indexed

lhbrx rD,rA,rB The EA is the sum (rA|0) + (rB). The high-order eight bits of the half word
addressed by the EA are loaded into the low-order eight bits of rD. The next eight
higher-order bits of the half word in memory addressed by the EA are loaded into
the next eight lower-order bits of rD. The remaining rD bits are cleared.

Load
Word Byte-
Reverse
Indexed

lwbrx rD,rA,rB The EA is the sum (rA|0) + (rB). Bits 0–7 of the word in memory addressed by
the EA are loaded into the low-order eight bits of rD. Bits 8–15 of the word in
memory addressed by the EA are loaded into bits 16–23 of rD. Bits 16–23 of the
word in memory addressed by the EA are loaded into bits 8–15. Bits 24–31 of
the word in memory addressed by the EA are loaded into bits 0–7. The
remaining bits in rD are cleared.

Store Half
Word Byte-
Reverse
Indexed

sthbrx rS,rA,rB The EA is the sum (rA|0) + (rB). The contents of the low-order eight bits of rS are
stored into the high-order eight bits of the half word in memory addressed by the
EA. The contents of the next lower-order eight bits of rS are stored into the next
eight higher-order bits of the half word in memory addressed by the EA.

Store Word
Byte-
Reverse
Indexed

stwbrx rS,rA,rB The effective address is the sum (rA|0) + (rB). The contents of the low-order
eight bits of rS are stored into bits 0–7 of the word in memory addressed by EA.
The contents of the next eight lower-order bits of rS are stored into bits 8–15 of
the word in memory addressed by the EA. The contents of the next eight lower-
order bits of rS are stored into bits 16–23 of the word in memory addressed by
the EA. The contents of the next eight lower-order bits of rS are stored into bits
24–31 of the word addressed by the EA.

4-36 PowerPC Microprocessor Family: The Programming Environments (32-Bit)

The PowerPC architecture defines the load multiple word (lmw) instruction with rA in the
range of registers to be loaded, including the case in which rA = 0, as an invalid form.

4.2.3.6 Integer Load and Store String Instructions
The integer load and store string instructions allow movement of data from memory to
registers or from registers to memory without concern for alignment. These instructions can
be used for a short move between arbitrary memory locations or to initiate a long move
between misaligned memory fields. However, in some implementations, these instructions
are likely to have greater latency and take longer to execute, perhaps much longer, than a
sequence of individual load or store instructions that produce the same results. Table 4-17
summarizes the integer load and store string instructions.

Load and store string instructions execute more efficiently when rD or rS = 5, and the last
register loaded or stored is less than or equal to 12.

In some PowerPC implementations operating with little-endian byte order, execution of a
load or string instruction causes the system alignment error handler to be invoked; see
Section 3.1.2, “Byte Ordering,” for more information.

Load string and store string instructions may involve operands that are not word-aligned.
As described in Section 6.4.6, “Alignment Exception (0x00600),” a misaligned string
operation suffers a performance penalty compared to an aligned operation of the same type.
A non–word-aligned string operation that crosses a double-word boundary is also slower
than a word-aligned string operation.

Table 4-16. Integer Load and Store Multiple Instructions

Name Mnemonic
Operand
Syntax

Operation

Load Multiple Word lmw rD,d(rA) The EA is the sum (rA|0) + d. n = (32 – rD).

Store Multiple Word stmw rS,d(rA) The EA is the sum (rA|0) + d. n = (32 – rS).

Table 4-17. Integer Load and Store String Instructions

Name Mnemonic Operand Syntax Operation

Load String Word Immediate lswi rD,rA,NB The EA is (rA|0).

Load String Word Indexed lswx rD,rA,rB The EA is the sum (rA|0) + (rB).

Store String Word Immediate stswi rS,rA,NB The EA is (rA|0).

Store String Word Indexed stswx rS,rA,rB The EA is the sum (rA|0) + (rB).

