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EECS 270 Verilog Reference:  Sequential Logic 
 

1  Introduction 

 

In the first few EECS 270 labs, your designs were based solely on combinational logic, 

which is logic that depends only on its current inputs.  However, there are many cases in 

which we would like to implement functions that store some state—information about 

past inputs—and use that state to compute the functions’ outputs.  Logic that can store 

state is known as sequential logic.  The major use of sequential logic, at least in the EECS 

270 lab, is in the design of state machines.  This document discusses general principles of 

state machine design and also takes you through an example to show the various features 

of state machine design in the Verilog HDL.  It has two appendices—Appendix A shows 

the code for the arbiter, the example we use in our Verilog discussion, in full.  Appendix 

B provides a quick reference to the techniques discussed within and the Verilog 

constructs you need. 

 

2 State machine design 

 

The state machines you must create in EECS 270 all follow the same general design 

methodology.  As shown in the block diagram in Figure 1, you can break the design into 

three parts:  the next state logic, the state memory, and the output logic.  The next state 

logic is a combinational block responsible for implementing the transitions in the state 

diagram—based on the current state and the inputs, it determines what the next state 

should be.  The state memory contains the flip-flops that store the current state of the 

system.  At each clock edge, this block updates the state bits with the new values 

calculated in the next state logic.  The output logic determines the output of the system.   

Depending on the type of state machine—Moore or Mealy—this logic may depend either 

on the current state alone or on the current state and the inputs.  The block diagram shows 

a system designed in this manner with N+1 bits of state, M+1 input bits, and P+1 output 

bits. 

 
Figure 1:  Block diagram for general state machine design 
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3 Implementing state machines in Verilog 

 

We will base most of our Verilog discussion on the example of an arbiter, which is 

adapted from Deepak Kumar Tala’s site (http://www.asic-world.com/tidbits/fsm.html).  

The arbiter has four inputs—a clock, a reset input, and two request inputs, req_0 and 
req_1—and two grant outputs, gnt_0 and gnt_1.  The circuit is designed to function as 
follows: 

 

• When req_0 is asserted and req_1 is not asserted, gnt_0 is asserted  
• When req_1 is asserted and req_0 is not asserted, gnt_1 is asserted  
• When both req_0 and req_1 are asserted then gnt_0 is asserted; in other words, 

priority is given to req_0 over req_1.  
 

A state diagram and block diagram for the arbiter are shown below.  The code starts on 

the following page.  Rather than discussing the whole arbiter module at once, we break it 

into the major sections—declarations, next state logic, sequential logic, and output 

logic—and highlight the features and design of each.  Each block of code is provided 

with a short explanation of its functionality and is followed by a more detailed 

discussion.  The code is shown in its entirety at the end of this document. 

 

 
(a) 

 
(b) 

 

Figure 2:  (a) State diagram and (b) block diagram for arbiter 
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3.1  Declarations 
 

module arbiter (clock, reset, req_0, req_1, gnt_0, gnt_1); 
 
input clock, reset, req_0, req_1;  
output gnt_0, gnt_1;     
reg gnt_0, gnt_1;  
 
parameter   IDLE=3'b001;  
parameter GNT0=3'b010;  
parameter   GNT1=3'b100; . 
 
reg [2:0] state;      
reg [2:0] next_state;   
 

 

 

 

 

 

 

 

 
 

Figure 3:  Declarations section of the arbiter module 

 

As with all Verilog modules, your state machines require a declarations section at the 

beginning.  This section of the code is where you declare your inputs, outputs, and 

intermediate variables; it will also be the area where you define your state encoding. 

 

Notice that gnt_0 and gnt_1 are both “declared” twice.  In this case they are listed as 
outputs, but also declared as type reg.  Anything which will be assigned a value in an 
always block must be declared to be of type reg.  Anything which will be assigned a 
value in an assign statement must be declared to be of type wire.  As a default, outputs 
are assumed to be of type wire unless redeclared otherwise.  As we will not be using 
assign statements in this example, everything will be of type reg. 
 

One of the most important aspects of any state machine is the definition of the various 

states and the manner in which they are encoded.  You can specify these state definitions 

by using parameters as shown in the code above.    The example above uses a one-hot 

encoding for its state definitions; note that we could save some hardware by specifying 

the three states in 2 bits, as follows: 

 

 parameter  IDLE  =2'b00 
 parameter  GNT0 =2’b01 
 parameter  GNT1 =2’b10 
 

The module declaration and 

input/output declarations are 

the same as in any other 

Verilog module.   

You must also declare 

intermediate variables to hold 

the values of the current and 

next state—the inputs and 

outputs of the flip-flops that 

make up the state memory of 

each state machine 

 

This section is the place 

where you define a unique 

encoding for each state in 

your machine; the example 

uses a one-hot encoding for 

its three states. 

We need to declare anything 

to which a value will be 

assigned inside of an always 

block as “reg” not “wire”.  
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This code uses two separate state variables, state and next_state.  Although it is 
declared as type reg, next_state is the output of the combinational logic that derives the 

next state from the current state and the inputs.  state is used in the actual sequential part 
of the circuit, holding the value of the current state for each cycle.  You should follow 

this same practice—have one variable that represents the result of the next state logic, 

and one variable that actually stores the state.  Note that the bit width of each of these 

signals matches the bit width of the encoded states. 

 

3.2 Next state logic 

 

always @*      
begin     
  case(state)    
  IDLE :  if (req_0 == 1'b1)   
                 next_state = GNT0;  
                else if (req_1 == 1'b1) 
                  next_state= GNT1; 
                else 
                  next_state = IDLE; 
  GNT0 :  if (req_0 == 1'b1) 
                  next_state = GNT0; 
               else 
                  next_state = IDLE; 
  GNT1 :  if (req_1 == 1'b1) 
                  next_state = GNT1; 
               else 
                  next_state = IDLE; 
  default:  next_state = IDLE; 
  endcase 
end   
 

 

 

 

 

 

 

 

 
 

Figure 4:  Next state logic section of arbiter module 

 

The next state logic is a combinational block that determines the new values of the state 

bits from their current values and the values of the inputs.  This section removes most of 

the complexity from the state memory, a region of code which should be as simple as 

possible.  This implementation uses if and case statements to handle the state transitions; 
these statements and the details of their use are explained in the sub-sections below. 

This example uses conditional 

statements (if and case) to 
implement combinational logic; 

each of these statements must be 

enclosed in an always block.  An 
always @* block is used as 
combinational logic. 

 

See below for an explanation of the 

syntax. 

 

The next state logic is a 

combinational block used to derive 

the next values of the state bits 

from the current state and the 

inputs—essentially, this logic 

implements the transitions in the 

state diagram.  For example, the 

first set of lines handle the cases 

where the arbiter is in state IDLE—
if req_0 is 1, it transitions to 
GNT0, if req_1 is 1, it transitions 
to GNT1, and if neither input is 1, 
it remains in the same state, just as 

shown in Figure 2. 
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Note that you could implement the next state logic using assign statements because it is 
strictly combinational logic.  This practice may be particularly useful in cases where it is 

relatively easy to derive the next state bits.  The arbiter example is one such case, 

especially given the one-hot encoding of the states.  We leave it up to you to verify the 

correctness of these equations, but the code above could be written as follows: 

 

 assign next_state[0] = (~req_0 & ~req_1 & state[0]) |  
    (~req_0 & state[1]) | (~req_1 & state[2]); 

 assign next_state[1] = req_0 & (state[0] | state[1]); 
 assign next_state[2] = req_1 & (state[0] | state[2]); 
 
If we did rewrite the next state logic using assign statements, we would also have to 
change the declaration section and declare the variable next_state as a wire, not a reg.  
Again, variables used on the left-hand side of assign statements must be wires, while 
variables used on the left-hand side of assignments within always blocks must be regs. 
 

3.2.1 Combinational logic via always blocks 

 

Although combinational logic can always be written using assign statements, there are 
more powerful constructs—specifically, the if and case statements—that can be used to 
implement conditional assignments in a manner that may be more familiar to software 

programmers.  We use both of these statements in the next state logic.  There are some 

subtleties involved in using if and case statements because they must be enclosed in 
always blocks, as shown in the arbiter.  The format of an always block is as follows: 
 

 

always @ (<sensitivity list>)  
begin 

   <body of block> 
  end 
 
 
Separate always blocks are evaluated, in parallel, throughout the execution of a 
simulation; they will synthesize to parallel blocks on the FPGA.  As you will see in later 

sections, the sequential logic and output logic are also implemented in always blocks.  

Therefore, these three blocks will execute simultaneously.  Within each block itself, 

however, execution will proceed sequentially, as in a typical C program, provided you 

use the blocking assignment operator (=).  The non-blocking assignment operator (<=) is 

used strictly in sequential logic and is discussed in the next section.   

 

The begin and end keywords act in a manner similar to the curly brackets, { and },  in 
many high-level programming languages.  They are used to group multiple statements 

together and should be present for every always block.  As noted above, variables 
assigned to inside always blocks should be declared as type reg, even if the block is used 
for combinational logic; these variables will synthesize to wires if they store no state. 

We always will use “@(posedge clock)” 

for sequential logic and “@*” for 

combinational logic.  There are other 

options.  See the section on sensitivity 

lists (below). 
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3.2.2 Sensitivity lists 

 

The sensitivity list is the tricky part of an always block.  It must contain all of the 
variables to which the block is “sensitive;” in other words, if any of the variables in the 

sensitivity list change, the always block is re-evaluated.  The “@*” notation simply says 
that if anything changes which could impact any result, the whole block should be re-

evaluated.  For combinational logic you should always use @*.    
 

3.2.3 if and case statements 

 

Within the body of an always block, you may use if and case statements.  Their syntax 
is demonstrated in the arbiter example, but we give general forms for each below, 

beginning with the if statement: 
 

 if (<condition1>) 
  <statement1> 
 else if (<condition2>) 
  <statement2> 
 … 
 else 
  <statement3> 
 
The if statement functions almost exactly as in typical software programming languages.  
One major difference is that if a statement like <statement1> contains multiple 
assignments, those assignments must be enclosed by the begin and end keywords.  An 
example is shown in the code for the output logic; see section 3.4.  The case statement is 
shown next: 

 

 case (<variable>) 
 <case1>: <statement1> 
 <case2>: <statement2> 
 … 
 default: <statement_default> 
 endcase 
 

Each of the cases (<case1>, <case2>, etc.) must be a literal or macro reference, as in the 

example.  The keyword endcase denotes the end of the case statement.In a 
combinational always block, it is important that any variable you ever assign to is 

always assigned to.  You should do this by specifying default behavior.
1
  There are a 

number of ways to do this.  One way to do this is to simply assign a value to every output 

before you do anything else.  You can then override it later. (The last assignment 

                                                 
1
 Why this is important is a bit subtle.  In a combinational circuit the output is, by definition, determined 

solely by the input.  If you can go through a combinational always block without assigning a value to a 

certain output, it is unclear what that output should be.  If your intent was to have it keep it’s old value, 

you’ve just created a sequential logic block.  Quartus will generate an “Always Construct Warning” if you 

do this. 
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encountered in the always block is the one that actually occurs.) Another way is to be 

sure that every explicitly list (as a “case” or an “if” condition) assigns values to all 

variables and that you have a default case that covers every possibility. In an if statement, 
this is done with an else statement after all if/else if statements. in a case statement, this 
is done with a default case.   
 

If there is a path through your combinational always block that doesn’t assign to all 

outputs, you should get a warning that looks something like this: 

 

Warning (10240): Verilog HDL Always Construct warning at test2.v(30): variable 

"next_state" may not be assigned a new value in every possible path through the 

Always Construct.  Variable "next_state" holds its previous value in every path with 

no new value assignment, which may create a combinational loop in the current 

design. 

 

 

3.3 State memory 
 

always @ (posedge clock)  
begin      
  if (reset == 1'b1)    
 state <= IDLE;    
  else 
 state <= next_state; 
end   
 

 

 

 

 

 

 

 

 

 

 

 

Figure 5:  State memory section of arbiter module 

 

The state memory block stores the state bits for your system.  It ensures that your state 

transitions occur at regular intervals—usually at rising clock edges—and allows the state 

bits to remain stable while their next values are calculated in the next state logic. 

 

One of the key differences between combinational logic in always blocks and sequential 
logic in always blocks is in the sensitivity list. When designing combinational logic, 
these lists effectively contain every variable that can possibly affect the assignments 

inside the given block.  If any of those variables change, the whole block is evaluated.  

The state memory block implements the 

flip-flops at the core of every state 

machine.  Since we want the state 

memory to change only at the rising edge 

of the clock signal, we write the 

sensitivity list as shown here—the 

keyword posedge denotes a rising edge 
of the given signal.  This block simply 

assigns the values of the next_state bits 
(calculated above) to the current state bits 

unless reset is 1, in which case the 
machine returns to its initial state. 

 

This particular state memory block has a 

synchronous reset—the reset is evaluated only 

on the rising edge of the clock.  Asynchronous 

resets are discussed below. 

 

Note the <= assignment operator 

used here.  This operator is a 

blocking assignment and should be 

used in every sequential logic 

block.  If you are implementing 

combinational logic in an always 
block, use the standard = operator 

for assignments. 
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For sequential logic, however, the timing of new assignments should almost always 

depend solely on the clock driving that logic.  Since typical state machines store their 

state in D flip-flops, the logic updating that state should only change on rising clock 

edges.  If you wanted to implement this block using negative edge-triggered flip-flops, 

you would change the posedge keyword to negedge. 
 

3.3.1 Blocking assignments 

 

Note that the assignments in this always block use <= instead of =.  The <= operator is a 
non-blocking assignment operator; it should always be used in sequential logic blocks.  

Rather than executing sequentially, non-blocking assignments behave as follows: 

 

• Within a given block, all right-hand sides for all assignments are evaluated. 

• The new values are assigned simultaneously, not sequentially. 

 

This behavior means that the following two pairs of assignments are not equivalent if 

they are each inside an always block: 
 

 a = 1;      a <= 1; 
 b = a;      b <= a; 
 
Assume that a initially holds the value 0.  After the left pair of assignments, b will have 
the value 1, because blocking assignments are used—first 1 is assigned to a, then a is 
assigned to b.  In the right pair of assignments, b will have the value 0—when the right-
hand sides are evaluated, a still has the value 0, so 0 is assigned to b and 1 is assigned to 
a. 
 

 

 

3.3.2 Synchronous vs. asynchronous reset 

 

In the arbiter example, the reset signal used in the sequential logic block is 

synchronous—since that block is only evaluated at each rising edge of the clock, the reset 

can only affect the output at the clock edge.  If you want to implement an asynchronous 

reset signal, a reset that changes the output regardless of when the next clock edge is, you 

should change the first line of the sequential always block to read: 
 

  always @ (posedge clock or posedge reset)  
 

Now, the block will be evaluated every time the reset changes from 0 to 1, as well as at 

the rising clock edges.  Note that if the reset signal is still 1 at a subsequent rising clock 

edge, it will continue to hold the arbiter in the idle state.  In general, you shouldn’t use 

asynchronous resets in this class.  You have to be very careful that there are no glitches 

on the reset line if you do chose to use it. 
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3.4 Output logic 
 

always @*   
begin      
  case(state)       
  IDLE :  begin 
                   gnt_0 = 1'b0; 
                   gnt_1 = 1'b0; 
                end 
  GNT0 :  begin 
                   gnt_0 = 1'b1; 
                    gnt_1 = 1'b0; 
                end 
  GNT1 :  begin 
                    gnt_0 = 1'b0; 
                   gnt_1 = 1'b1; 
                end 
  default : begin 
                 gnt_0 = 1'b0; 
                    gnt_1 = 1'b0; 
    end 
  endcase 
end   
 

 

Figure 6:  Output logic section of arbiter module 

 

The output logic does exactly what its name implies—calculates the output of the system.  

In a Moore machine, this logic depends only on the current state.  In a Mealy machine, 

this logic depends on both the current state and the inputs.  Mealy machines may need to 

store additional state for their outputs (see the text for more details).   

 

Since the arbiter is a Moore machine and its outputs are combinational, we can once 

again use assign statements to implement this logic just as we can with the next state 
logic.  The equations for the outputs gnt_0 and gnt_1 are even simpler than the next 
state equations—gnt_0 is only 1 if the system is in state GNT0, and gnt_1 is only 1 if 
the system is in state GNT1.  Once again, the one-hot encoding of the states makes the 
assign statements easy to write: 
 

 assign gnt_0 = state[1]; 
 assign gnt_1 = state[2]; 
 

References 

 

The original arbiter example can be found at http://www.asic-world.com/tidbits/fsm.html  

 

The output logic block is also combinational 

logic, but its structure depends on the type of 

state machine you implement.  If you design 

a Moore machine, then the outputs depend 

solely on the current state.  If you instead 

design a Mealy machine, then the outputs 

depend on the current state and the inputs.   

Note the use of the begin and end keywords 
in each of the cases in the case statement.  If 
you want to group multiple assignments 

together in a case or if statement, begin 
must precede the first assignment and end 
must follow the last one. 
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As with the combinational logic documentation, this document borrows from the EECS 

470 Verilog reference material, particularly “Synthesizable Verilog Guidelines for EECS 

470,” found at http://www.eecs.umich.edu/courses/eecs470/synth.pdf  
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Appendix A: Complete code example 
module arbiter (clock, reset, req_0, req_1, gnt_0, gnt_1); 
 
input clock, reset, req_0, req_1;  // Input declarations 
output gnt_0, gnt_1;   // Output declarations 
reg  gnt_0, gnt_1;  
 
parameter  IDLE=3'b001;  // State definitions 
parameter  GNT0=3'b010;  // This example uses a one-hot encoding for its three 
parameter  GNT1=3'b100;  // states.  You can use a different encoding scheme. 
 
reg [2:0] state;       // Sequential variable to store the current state 
reg [2:0] next_state;    // Combinational variable used to calculate the next state 
 
always @*     // Combinational logic block 
begin     
  case(state)    
  IDLE :  if (req_0 == 1'b1)  // Implements transitions in state diagram  
                 next_state = GNT0; // (see Fig. 2 for state diagram) 
                else if (req_1 == 1'b1) 
                 next_state= GNT1; 
                else 
                 next_state = IDLE; 
  GNT0 :  if (req_0 == 1'b1) 
                 next_state = GNT0; 
               else 
                 next_state = IDLE; 
  GNT1 :  if (req_1 == 1'b1) 
                  next_state = GNT1; 
               else 
                  next_state = IDLE; 
  default:  next_state = IDLE; 
  endcase 
end  // end of always @* 
 
always @ (posedge clock)  // Sequential logic-implements flip-flops (with 
begin     // reset) to store value of current state; reset 
  if (reset == 1'b1)   // returns machine to initial state 
 state <= IDLE;    
  else 
 state <= next_state; 
end  // end of always @ (posedge clock) 
 
always @*  // Output logic-determines outputs from current state 
begin      
  case(state)       
  IDLE :  begin 
                   gnt_0 = 1'b0; 
                   gnt_1 = 1'b0; 
                end 
  GNT0 :  begin 
                   gnt_0 = 1'b1; 
                    gnt_1 = 1'b0; 
                end 
  GNT1 :  begin 
                    gnt_0 = 1'b0; 
                   gnt_1 = 1'b1; 
                end 
  default : begin 
                 gnt_0 = 1'b0; 
                    gnt_1 = 1'b0; 
    end 
  endcase 
end  // end of always @ (state) 
endmodule 
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Appendix B: Quick reference guide 
General state machine design 

 

 
• Break Verilog code into next state logic, sequential logic, and output logic 

• Next state logic 

o Determines next state of system from current state and inputs 
o Strictly combinational logic 
o Can be implemented with assign statements or with if/case statements 

inside always blocks 

• Sequential logic 

o Flip-flops that store state of system 
o May incorporate reset signal that returns machine to initial state 

• Output logic 

o Calculates system outputs 
o Moore machine � output logic depends solely on current state (shown 

above) 

o Mealy machine � output logic depends on current state and input bits 
 

always blocks 

• Format: 
always @ (<sensitivity list>)  
begin 
    <body of block> 
end 

 

• Variables assigned within must be declared as type reg 

• Sensitivity list 
o Variables in sensitivity list separated by or (not logical operator | ) 
o In combinational logic should use @* 
o In sequential logic, sensitivity list should contain clock edge at which flip-

flops are expected to change 
� posedge clock � positive edge-triggered flip-flops 
� negedge clock � negative edge-triggered flip-flops 



 

 13 

� If an asynchronous reset is used, sensitivity list should contain 

clock edge and posedge reset to ensure state changes as soon as 
reset is asserted.  No such change is necessary for a synchronous 

reset. 

• Assignments 
o Combinational always blocks should use blocking assignments:  = 
o Sequential always blocks should use non-blocking assignments:  <= 

 

if statements 

• Format 
 

 if (<condition1>) 
  <statement1> 
 else if (<condition2>) 
  <statement2> 
 … 
 else 
  <statement3> 
 

• Must be inside always blocks 

• <condition1> … <conditionx> must cover all possible values of variables checked 

in conditions to avoid “implying a latch” 
o Can cover remaining cases using else statement 

• If any of the statements contain multiple assignments, surround assignments with 

begin and end keywords 
 

case statements 

• Format 

 

 case (<variable>) 
 <case1>: <statement1> 
 <case2>: <statement2> 
 … 
 default: <statement_default> 
 endcase 
 

• Must be inside always blocks 

• <case1> … <casex> must cover all possible values of <variable> to avoid 

“implying a latch” 
o Can cover remaining values using default case 

• If any of the statements contain multiple assignments, surround assignments with 

begin and end keywords 


