
Practice final for EECS 380, 2001: Prof Markov

Available in Postscript and PDF
Total pages: 5
Exam duration: 1hr 50min.
Write your name and uniqname on every sheet, including the cover.

Maximum score: 100 points + 15 extra. Extra credit points do not affect the curve.
To be eligible for extra credit, you need to earn at least 70 regular points.

All complexity estimates are for runtime (not for memory), unless specified otherwise.

1. 30 points. Algorithmic Complexity

Each line in the table corresponds to an algorithm or an algorithmic problem. Write P for problems
and A for algorithms. A problem gives input and output, but an algorithm additionally entails a
particular method of achieving this output. Fancy data structures (e.g., heaps, BSTs and
hash-tables) often imply specific algorithms. Simple containers (e.g., arrays and linked lists) are
typically used to store input or output and may restrict possible algorithms.

For each algorithm, write its Theta-complexities.
For each problem, write Theta-complexities of a best possible algorithm that solves the problem.
There can be multiple correct answers, especially, if there is a trade-off between average-case and
worst-case performance.
No explanation necessary.

You can assume that operator< and operator== for values stored in containers run in O(1) time.
You cannot make any additional assumptions about algorithms/problems unless instructed by Prof.
Brehob or Prof. Markov.

Each line is worth 2 points. Each wrong or missing answer on a line costs -1 point.
Minimum per line = 0 points.

Algorithm or Problem: ? Best-case
Theta()

Avg-case
Theta()

Worst-case
Theta()

1. Find a given value in an unsorted N-by-N
matrix. P 1 N2 N2

2. Binary search over N elements A 1 log N log N

3. Find the largest element in an unsorted array
with N elements

4. Print all values appearing at least twice in a
sorted stack of size N

5.
Insert a new element into a sorted singly-linked
list with N elements
so that the list remains sorted

6.
Given two unsorted arrays of N and N/10
elements, say whether they have at least one
common element

 don’t bother

7. Shaker sort of a doubly-linked list with N
elements, using "early termination".

8. Duplicate a queue of N elements

9.

One invocation of the partition() function
used in the quicksort algorithm. Assume
in-place partitioning of a complete array with N
elements using a given pivot

10.
Given a pointer to an element in a singly-linked
list with N elements, remove that element from
the list

11.
Sort N 8-bit characters stored in an array. Only
O(1) additional memory allowed (in-place
sorting)

12. Remove the middle element from an unsorted
array of N elements

13. Compute N! for a given N using a
straightforward recursive algorithm

14.

Find the combination of N decimal digits that
opens a bank safe. The safe opens when you
enter the right combination, and you can try as
many combinations as you wish. No other
feedback is available

15. Print all diagonal values of a given N-by-N
matrix

2. 10 points. STL

Fill in the blanks
a. "STL" stands for ___
b. A range can be defined by two _________________
c. STL’s sort() and binary_search() functions take an optional ___________

function-object
d. One can use class ________ from STL as an implementation of Abstract Symbol Table.
e. Iterators of linked list classes in STL do not allow _________ access.

3. 20 points. Fancy containers (heaps, generic trees, search trees, hash-tables, etc)

a. 10 points. Follow instructions from Question 1.

Algorithm or Problem: Best-case
Theta()

Avg-case
Theta()

Worst-case
Theta()

1. Print all values stored at nodes of a
given tree with N nodes

2. Convert a binary heap of N elements
into a sorted array

 don’t bother

3. Test whether a given array with N
values is in a binary-heap order

4.

One search in a BST of N elements.
Assume that the tree is perfectly
balanced and the search results in a
miss

5.

One successful look-up in a hash table
with N elements and load ratio* 1.0.
The hash-table uses separate chaining
with singly-linked lists. Assume that
hash-function can be computed in O(1)
time.
Note: elements contained in the
hash-table may be poorly dispersed.

* The load ratio of a hash-table with N elements and M buckets is N/M.

b. 5 points. Consider struct Key { char p1, p2, p3 };

and the following hash-functions (modulo hash-table size).
1. unsigned f1(struct Key& s) { return s.p1+5*s.p2; }

2. unsigned f2(struct Key& s) { return 10*s.p1+100*s.p2+1000*s.p3; }

3. unsigned f3(struct Key& s) { return 11*s.p1+101*s.p2+1001*s.p3; }
Assume a hash-table of size 1250 with linear probing.
Mark each hash-function as good or bad . Use space below to explain.

c. 5 points . Fill in the blanks.
Markov section only
In BSTs, ______ and ______ rotations have time complexity Theta(____) .
They are explicitly used in _______ insertion and ________ algorithms. Two
BSTs can be joined using a _________ algorithm, which applies _______
________ to one of the trees. The worst-case complexity of such a join
algorithm is Theta(_____) , but the best case can be faster when
__.

Brehob section only
Each node in a 2-3-4 tree has ____, ____ or ____ keys in it. ___________
trees are an implemention of 2-3-4 trees. Insertion into a 2-3-4 tree has
worst-case complexity Theta(____) and search has worst-case complexity
Theta(____) .

4. 20 points. Algorithm design: Recursion / Divide and Conquer / Dynamic
Programming

Implement the following C++ function

 void makeBalancedBST(unsigned *begin, unsigned numElem);

which takes an unsorted array and makes a balanced BST out of it, stored left
to right so that children of element k be 2*k and 2*k+1 . You must achieve
worst-case complexity O(numElem log 2(numElem)) and explain how you did it. 15
points for the case when numElem is a power of two minus one (say, 3, 7 or 15),
5 additional points for the general case. Use a separate page.

5. 20 points. Questions related to HWKs and Projects
a. 5 points. Provide a dictionary produced by the Huffman algorithm applied

to this input: AAABAABCCDCC. No explanation necessary.

b. 5 points. Heapify the digits of your student ID. Start with the digits in
the original order and show the process step by step.

c. 10 points. You are given a function that takes N planar points and returns
all points on the boundary listed clockwise. Provide an algorithm (in
pseudocode or valid C++) that sorts N doubles using that function and
spends O(N) time outside that function.

6. Extra credit : 15 points. ‘‘Comments not available’’ .

In this question you are given a printout of a C++ function, with coke spilled
over the comments (=> you can’t read the comments). You need to explain what
the function does, illustrate by several representative examples, give
worst-case/best-case Theta() for runtime and substantiate these complexity
estimates.

 int L2(const char * A, const char * B)
 // COMMENTS NOT AVAILABLE
 {
 int m=strlen(A), n=strlen(B), i, j;
 int L[m+1][n+1]; // g++ extension to C++
 for (i = m; i >= 0; i--)
 for (j = n; j >= 0; j--)
 {
 if (A[i] == ’\0’ || B[j] == ’\0’) { L[i][j] = 0; }
 else if (A[i] == B[j]) L[i][j] = 1 + L[i+1][j+1];
 else L[i][j] = max(L[i+1][j], L[i][j+1]);
 }
 j=L[0][0];
 return j;
}

Source code courtesy of Prof. David Epstein.

