
SOLUTIONS for practice final for EECS 380, 2001
Profs Markov and Brehob

Available in Postscript and PDF
Total pages: 5
Exam duration: 1hr 50min.
Write your name and uniqname on every sheet, including the cover.

Maximum score: 100 points + 15 extra. Extra credit points do not affect the curve.
To be eligible for extra credit, you need to earn at least 70 regular points.

All complexity estimates are for runtime (not for memory), unless specified otherwise.

1. 30 points. Algorithmic Complexity

Each line in the table corresponds to an algorithm or an algorithmic problem. Write P for problems
and A for algorithms. A problem gives input and output, but an algorithm additionally entails a
particular method of achieving this output. Fancy data structures (e.g., heaps, BSTs and
hash-tables) often imply specific algorithms. Simple containers (e.g., arrays and linked lists) are
typically used to store input or output and may restrict possible algorithms.

For each algorithm, write its Theta-complexities.
For each problem, write Theta-complexities of a best possible algorithm that solves the problem.
There can be multiple correct answers, especially, if there is a trade-off between average-case and
worst-case performance.
No explanation necessary.

You can assume that operator< and operator== for values stored in containers run in O(1) time.
You cannot make any additional assumptions about algorithms/problems unless instructed by Prof.
Brehob or Prof. Markov.

Each line is worth 2 points. Each wrong or missing answer on a line costs -1 point.
Minimum per line = 0 points.

Algorithm or Problem: ? Best-case
Theta()

Avg-case
Theta()

Worst-case
Theta()

1. Find a given value in an unsorted N-by-N
matrix. P 1 N2 N2

2. Binary search over N elements A 1 log N log N

3. Find the largest element in an unsorted array
with N elements P N N N

4. Print all values appearing at least twice in a
sorted stack of size N P N N N

5.
Insert a new element into a sorted
singly-linked list with N elements
so that the list remains sorted

 P 1 N N

6.
Given two unsorted arrays of N and N/10
elements, say whether they have at least one
common element

 P 1 N log N N log N

7. Shaker sort of a doubly-linked list with N
elements, using "early termination". A N N2 N2

8. Duplicate a queue of N elements P N N N

9.

One invocation of the partition() function
used in the quicksort algorithm. Assume
in-place partitioning of a complete array with
N elements using a given pivot

 P/A N N N

10.
Given a pointer to an element in a
singly-linked list with N elements, remove that
element from the list

 P 1 1* N**

11. Sort N 8-bit characters stored in an array. P N N N

12. Remove the middle element from an unsorted
array of N elements P 1 1 1

13. Compute N! for a given N using a
straightforward recursive algorithm A N N N

14.

Find the combination of N decimal digits that
opens a bank safe. The safe opens when you
enter the right combination, and you can try as
many combinations as you wish. No other
feedback is available

 P 1 10N 10N

15. Print all diagonal values of a given N-by-N
matrix P N N N

* Suppose the pointer points to A. Copy the successor B into A and remove old copy of B.
** The worst-case happens when A is the last element. (This can be prevented with a sentinel)

2. 10 points. STL

Fill in the blanks
a. "STL" stands for ____Standard Template Library______
b. A range can be defined by two __iterators______
c. STL’s sort() and binary_search() functions take an optional _comparison_

function-object
d. One can use class __map__ from STL as an implementation of Abstract Symbol Table.
e. Iterators of linked list classes in STL do not allow __random_ access.

3. 20 points. Fancy containers (heaps, generic trees, search trees, hash-tables, etc)

a. 10 points. Follow instructions from Question 1.

Algorithm or Problem: Best-case
Theta()

Avg-case
Theta()

Worst-case
Theta()

1. Print all values stored at nodes of a
given tree with N nodes

 N N N

2. Convert a binary heap of N elements
into a sorted array

 don’t bother NlogN NlogN

3. Test whether a given array with N
values is in a binary-heap order

 1 1 or N N

4.

One search in a BST of N elements.
Assume that the tree is perfectly
balanced and the search results in a
miss

 log N log N log N

5.

One successful look-up in a hash table
with N elements and load ratio* 1.0.
The hash-table uses separate chaining
with singly-linked lists. Assume that
hash-function can be computed in O(1)
time.
Note: elements contained in the
hash-table may be poorly dispersed.

 1 1 N

* The load ratio of a hash-table with N elements and M buckets is N/M.

b. 5 points. Consider struct Key { char p1, p2, p3 };
and the following hash-functions (modulo hash-table size).

1. unsigned f1(struct Key& s) { return s.p1+5*s.p2; }

2. unsigned f2(struct Key& s) { return 10*s.p1+100*s.p2+1000*s.p3; }

3. unsigned f3(struct Key& s) { return 11*s.p1+101*s.p2+1001*s.p3; }
Assume a hash-table of size 1250 with linear probing.
Mark each hash-function as good or bad. Use space below to explain.

Solution
f1() does not depend on p3 therefore keys that only differ at p3 will
not be dispersed. BAD
All values of f2() are divisible by 10. Since the table size is also
divisible by 10, at most 10% of the hash buckets can be used w/o hash
collisions. BAD
f3() depends on all fields and is a linear function whose coefficients
are relatively prime with the table size. GOOD

c. 5 points. Fill in the blanks.
Markov section only
In BSTs, _left_ and _right_ rotations have time complexity Theta(_1_).
They are explicitly used in _root__ insertion and _partitioning_
algorithms. Two BSTs can be joined using a _recursive_ algorithm, which
applies _root_ _insertion_ to one of the trees. The worst-case complexity
of such a join algorithm is Theta(_N2_), but the best case can be faster
when __a pivot exists such that all values in the first tree are smaller
and all values in the second tree are larger than the pivot__.

Brehob section only
Each node in a 2-3-4 tree has _1__, _2__ or _3__ keys in it. _red-black_
trees are an implemention of 2-3-4 trees. Insertion into a 2-3-4 tree has
worst-case complexity Theta(_logN_) and search has worst-case complexity
Theta(_logN_).

4. 20 points. Algorithm design: Recursion / Divide and Conquer / Dynamic
Programming

Implement the following C++ function

 void makeBalancedBST(unsigned *begin, unsigned numElem);

which takes an unsorted array and makes a balanced BST out of it, stored left
to right so that children of element k be 2*k and 2*k+1. You must achieve
worst-case complexity O(numElem log2(numElem)) and explain how you did it. 15
points for the case when numElem is a power of two minus one (say, 3, 7 or 15),
5 additional points for the general case. Use a separate page.

Solution: a a complete working program for the general case is provided.

5. 20 points. Questions related to HWKs and Projects
a. 5 points. Provide a dictionary produced by the Huffman algorithm applied

to this input: AAABAABCCDCC. No explanation necessary.

Explanation: Frequencies: A(5), C(4), B(2) and D(1). Huffman algorithm:
first merge the least frequent letters B and D (cumulative frequency is
3). Then merge the least frequent letters/subtrees: BD and C (cumulative
frequency 7). Then merge the resulting subtree with A. One of possible
ways to assign bits to the edges of the tree gives the following
prefix-free dictionary.

Answer: A: 0, C: 10, B:110, D:111
(alternative correct answers are possible)

b. 5 points. Heapify the digits of your student ID. Start with the digits in
the original order and show the process step by step.

Solution: for this problem one can use the linear-time make_heap algorithm
or call push_heap N times. The latter may be easier to remember, but
requires more work.

Linear-time make_heap on (1 2 3 4 5 6 7):
(1 2 3 4 5 6 7) (1 2 7 4 5 6 3) (1 5 7 4 2 6 3)
 (7 5 1 4 2 6 3) (7 5 6 4 2 1 3)

c. 10 points. You are given a function that takes N planar points and returns
all points on the boundary of the convex hull listed clockwise. Provide an
algorithm (in pseudocode or valid C++) that sorts N doubles using that
function and spends O(N) time outside that function.

Solution:
Find the smallest and the largest values (one linear-time pass).
Scale all original numbers by subtracting min and dividing by
(max-min) (one linear-time pass).
// The relative order is preserved, but all numbers are now between 0
and 1.
For every number alpha, compute the point on the unit circle whose
polar angle is alpha. The exact formulae for coordinates are
x=cos(alpha), y=sin(alpha) (one linear-time pass).
// Note that pi=3.1415926... and pi/2>1. // Therefore, the points will
not "wrap up" around the circle.
Run the convex hull algorithm.
// Note that that all those points will be on the convex hull.
// Additionally, the convex hull algorithm orders the points
clockwise.
Read off the points in the clockwise order and apply inverse
transformations: find alpha using the atan2() function or otherwise,
then multiply by (max-min) and add min (one linear-time pass).

6. Extra credit: 15 points. ‘‘Comments not available’’.

In this question you are given a printout of a C++ function, with coke spilled
over the comments (=> you can’t read the comments). You need to explain what
the function does, illustrate by several representative examples, give
worst-case/best-case Theta() for runtime and substantiate these complexity
estimates.

 int L2(const char * A, const char * B)
 // COMMENTS NOT AVAILABLE
 {
 int m=strlen(A), n=strlen(B), i, j;
 int L[m+1][n+1]; // g++ extension to C++
 for (i = m; i >= 0; i--)
 for (j = n; j >= 0; j--)
 {
 if (A[i] == ’\0’ || B[j] == ’\0’) { L[i][j] = 0; }
 else if (A[i] == B[j]) L[i][j] = 1 + L[i+1][j+1];
 else L[i][j] = max(L[i+1][j], L[i][j+1]);
 }
 j=L[0][0];
 return j;
}

Source code courtesy of Prof. David Epstein.

Solution (idea only): This program computes the length of the longest common
subsequence of two sequences. Its complexity is Theta(mn) where m and n are the
lengths of the two sequences. The asymptotic runtime is the same in all cases
due to the two nested loops w/o break instructions inside.

