
EECS 398 October 29, 2010
Intro to Computer Security Project 3: Application Security

Project 3: Application Security
This project is due on Thursday, November 18th at 5 p.m. and counts for 9% of your course
grade. Late submissions will be penalized by 10% plus an additional 10% every 12 hours until
they’re received. The professor may grant individual extensions, but only under truly extraordinary
circumstances. As always, we recommend that you begin early.

You must work alone for this project. You may not communicate with anyone other than the course
staff in any way regarding the solutions to this project. The code you submit must be entirely your
own work. You are free to discuss the project with other members of the class, but you may not
look at any part of someone else’s solution. You may consult published resources, provided that
you appropriately cite them (with program comments), as you would in an academic paper.You may
confer with other students regarding setting up VirtualBox and the details of the specification.

We will answer questions about the project in the Friday discussion section and the CTools forum.
As per the collaboration policy, do not post any code from your project to the forum. Please check
the forum regularly for updates and clarifications.

1 Introduction
In this project, you will exploit several classic software vulnerabilities. We will provide a series of
vulnerable programs and a virtual machine environment in which you will develop your exploits.

2 Ethics
This is an attack project. As a reminder, you must not attack any computers over which you do not
have sole control! If you have any questions about this policy, especially as it applies to this project,
you must contact the course staff before proceeding. If you do not abide by this policy, you will
fail the course. See the “Ethics, Law, and University Policies” section on the course website at
http://www.eecs.umich.edu/courses/eecs398/ for further information.

3 Goals
1. Be able to identify buffer overflow vulnerabilities in native code.

2. Be able to demonstrate the severity of buffer overflows and the necessity of the standard
defenses.

3. Become familiar with basic machine architecture and assembly language.

http://www.eecs.umich.edu/courses/eecs398/


4 Targets
The target programs for this project are simple, short C programs with (mostly) clear security
vulnerabilities. For each target, we have provided both source code and the compiled program.
We have also provided a Makefile that compiles all the targets. The source code and Makefile are
for your convenience during testing; your attacks must work against the exact binaries we have
provided. The targets are divided into three groups, explained below.

4.1 Subverting control flow
The first group of targets consists of several variations on the example from discussion on Fri-
day, October 30. These programs all take input on the standard input. They are example1,
example1_nostatic, and target1. For each target, your goal is merely to subvert the control
flow of the program. In particular, you will cause the program to print “Your grade is perfect.”,
using a function that we have included in each target solely for that purpose. It is OK if the program
crashes after this happens.

4.2 Redirecting control to shellcode
The second group of targets uses two classically vulnerable C standard library functions. They
are target2 and target3. In these attacks, your goal will be to redirect control to code that you
will inject. In particular, you will inject our provided shellcode in order to start a root shell (i.e., a
command prompt with administrator permissions), assuming that the target is installed setuid root
in /tmp. (A setuid program is one that runs with the permissions of its owner, even if it is run as
another user; thus, a setuid root program is one that always runs with administrative privileges.) We
have included install and uninstall targets in the Makefile to perform this installation for you, and
we have also provided a short x86 shellcode (see Section ??) to start the root shell.
To facilitate opening the root shell, these programs take input as a single command-line argument.

4.3 Trickier vulnerabilities
The final group of targets does not allow you to directly overwrite the return address in the process
of overrunning a buffer. Instead, you must use a less direct method. (If you find an attack that does
directly overwrite a return address as part of overrunning a buffer, please notify us so that we can
correct the assignment (or give out extra credit if it is a clever attack and not a simple mistake in the
assignment)).
Like the second group of targets, the intermediate targets take input as a single command-line
argument. Also like the second group, your goal is to use the provided shellcode to open a root
shell, assuming that the targets are installed setuid root in /tmp.
The intermediate targets are target4 and target5.

2



5 Running the virtual machine and testing your attacks
Because you need administrative privileges on your test machine, the CAEN machines are not usable
for this project. We ask that you install VirtualBox (http://www.virtualbox.org/) on your personal
machine and use the virtual machine appliance we have provided at http://www.eecs.umich.edu/
courses/eecs398/398-32bit-release.ovf and http://www.eecs.umich.edu/courses/eecs398/398-32bit-
release.vmdk (the download is 443 MB, so be sure to download it from on campus if possible).
VirtualBox runs on Windows, Linux, Macintosh, and OpenSolaris hosts. Further guidance on setting
up and using VirtualBox for this project will be released soon.
If you are unfamiliar with virtual machine software, it allows you to run a separate operating system
(called the guest) as though it were a program running on your normal operating system (called the
host). Thus, you will have a simulated computer on which to run your attacks. Modern advances
have made virtual machines perform quite well.
If you absolutely do not have a personal computer available on which to run VirtualBox, contact the
course staff ASAP for an alternative.
Inconveniently, we have “forgotten” the passwords for the virtual machine. Thus, your first task is
to set up the virtual machine, gain root privileges, and reset the passwords on the root and student
accounts, demonstrating how easy it is for an attacker with “physical” access to a machine to gain
control over it. (Hint: try Google.)

6 Deliverables
For each target, you will provide a very short Python script that prints appropriate input to exploit
the target. For each target foo, your Python script will be named attack_foo.py. We have provided a
simple example in attack_template.py.
For each of the first group of targets, test the target foo with the command line:
python path/to/attack_foo.py | env -i ./foo.
For each target where you are to open a root shell, test the target foo with the command line:
env -i /tmp/foo $(python path/to/attack_foo.py). (This syntax uses the output of your
Python script as the first command-line argument.) Remember to run make install first to install
the targets in /tmp.
Note: It is important to use env -i to ensure that your environment settings do not affect your stack
layout (thus rendering your attack non-deterministic).
We have provided shellcode.py, which defines a single variable called SHELLCODE whose
value is some compiled x86 shellcode (for reference, it is the execve portion of http://milw0rm.com/
shellcode/2042). You should import this file in your attack scripts. Successfully placing the
shellcode in memory and setting the instruction pointer to the beginning of the shellcode (e.g., by
returning or jumping to it) will open a shell.

3

http://www.virtualbox.org/
http://www.eecs.umich.edu/courses/eecs398/398-32bit-release.ovf
http://www.eecs.umich.edu/courses/eecs398/398-32bit-release.ovf
http://www.eecs.umich.edu/courses/eecs398/398-32bit-release.vmdk
http://www.eecs.umich.edu/courses/eecs398/398-32bit-release.vmdk
http://milw0rm.com/shellcode/2042
http://milw0rm.com/shellcode/2042


7 Hints and Guidelines
You will almost certainly find it easier to do this project if you use the GDB debugger, which you
should recall from EECS 280. Useful commands that you may not know are “disassemble”, “info
registers”, “x”, and “stepi”. See the built-in GDB help for details, and don’t be afraid to experiment!
If your exploit is crashing the target process, you can review the state of the process at the time of
the crash by enabling core dumps with the command ulimit -c unlimited. This will cause a
file called core to be created after each crash. To debug, provide the name of the core file as an
additional command-line argument to GDB: gdb ./example1 core. Under certain conditions,
an error message is also placed in the kernel log; you can view such messages with the dmesg
command. As the output of dmesg is quite large, we recommend that you pipe it to the tail
command: dmesg | tail.
Review the posted notes from discussion on Friday, October 29.
Read Smashing the Stack for Fun and Profit (http://insecure.org/stf/smashstack.html).
As a reminder, all the standard defenses against buffer overflow attacks are off. This means no
ASLR (address space layout randomization), no stack canaries, no non-executable stack, disabled
overflow checking in glibc, and so forth.

8 Turning it in
Submit your project via email to eecs398@umich.edu by 5:00 PM on November 18, 2010. Your
submission should be a gzipped tar archive named proj3.uniqname1.tar.gz with all the files in one
directory called proj3.uniqname1.
Late submissions are guaranteed not to receive any extra credit and may also incur substantial
penalties. Start early!

4

http://insecure.org/stf/smashstack.html

