Exam Statistics: Average $=104.5$, Median $=107$, Std. deviation $=13.9$, High score $=124$
Grade ranges: $\mathrm{A}=125-110\left(25 \mathrm{~A}^{\prime} \mathrm{s}\right) ; \quad \mathrm{B}=110-90(29 \mathrm{~B} ' \mathrm{~s}) ; \quad \mathrm{C}=90-65$ (7 C's); $\mathrm{D}=65-(1 \mathrm{D})$

1. Short answer questions (no explanations or justifications required)
[8] (a) Complete the following: A probability model for a random experiment consists of the items in the following list (just name the items):

A variable name, a sample spac]e, a probability law
[7] (b) State the "law of total probability". (There are two versions, either will suffice.)
If B_{1}, \ldots, B_{n} are a partition of the sample space (i.e. they are disjoint events and their union is the entire sample space) and A is some other event then

$$
\mathrm{P}(\mathrm{~A})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{~A} \cap \mathrm{~B}_{\mathrm{i}}\right) \text { or } \mathrm{P}(\mathrm{~A})=\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{P}\left(\mathrm{~B}_{\mathrm{i}}\right) \mathrm{P}\left(\mathrm{~A} \mid \mathrm{B}_{\mathrm{i}}\right)
$$

(Note on terminology: the entire collection $\left\{\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{n}}\right\}$ is called a partition. The individual sets B_{i} are called elements of the partitions. They are not themselves called "partitions".)
[5] (c) Give a brief precise definition of a "continuous" random variable. (You don't have to define "random variable", just "continuity" of a random variable.)

A random variable X is continuous if $\operatorname{Pr}(X=x)=0$ for all $x \in(-\infty, \infty)$.
The book gives a less direct definition: A r.v. X is continuous if its $\mathrm{cdf} \mathrm{F}_{\mathrm{X}}$ is a continuous function. It also says that the F_{X} must be smooth enough so that it can be written as the integral of some function. Actually, this last condition defines a special kind of continuous random variable
[5] (d) Give a brief precise formula for the "conditional probability of A given B " in terms of unconditional probabilities.

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\frac{\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})}{\mathrm{P}(\mathrm{~B})} \text { assuming } \mathrm{P}(\mathrm{~B})>0 ; \text { it is undefined if } \mathrm{P}(\mathrm{~B})=0
$$

[5] (e) Give a brief precise definition of the "probability density function" of a continuous random variable X.
The probability density function of a cont. r.v. X is a function $f:(-\infty, \infty) \rightarrow[0, \infty)$ such that

$$
\operatorname{Pr}(\mathrm{X} \in \mathrm{~A})=\int_{\mathrm{A}} \mathrm{f}(\mathrm{x}) \mathrm{dx}
$$

Alternatively, an indirect definition is: the probability density fucntion is the derivative of the cdf.
2. Suppose events E and F are independent with probabilities $P(E)=.7$ and $P(F)=.4$, respectively.
[10] (a) Find the probability that E or F occurs.

$$
\mathbf{P}(\mathbf{E} \cup \mathbf{F})=\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{~F})-\mathrm{Pr}(\mathrm{E} \cap \mathrm{~F})=\mathrm{P}(\mathrm{E})+\mathrm{P}(\mathrm{~F})-\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{~F})=.7+.4-.28=. \mathbf{8 2}
$$

[10] (b) Find the probability that exactly one of the events E or F occurs. (Hint: A Venn diagram might help.)
The event "exactly one of the events E or F occurs" corresponds to the set
$(\mathrm{E}-\mathrm{F}) \cup(\mathrm{F}-\mathrm{E})$, whose probability is

$$
\mathrm{P}(\mathrm{E}-\mathrm{F})+\mathrm{P}(\mathrm{~F}-\mathrm{E})=\mathrm{P}(\mathrm{E})-\mathrm{P}(\mathrm{E} \cap \mathrm{~F})+\mathrm{P}(\mathrm{~F})-\mathrm{P}(\mathrm{E} \cap \mathrm{~F})=.7-.28+.4-.28=.54
$$

3. A rental car company has 10 compact cars and 5 full-size cars. Four of the 15 cars are randomly selected for a safety inspection. What is the probability of getting two of each kind?
Each outcome of this experiment is a set of 4 cars (unordered). There are $\binom{15}{4}$ ways of choosing 4 cars from a set of 15 (ordering doesn't matter)); i.e. there are $\binom{15}{4}$ outcomes in the sample space. Each outcome has probability $1 /\binom{15}{4}$; i.e. all outcomes have the same probability. The event/set of interest is the set of all sets of 4 cars such that 2 are compact and 2 are full size. The probability of this event equals the number of outcomes in the set times $1 /\binom{15}{4}$. So we must count how many outcomes are in the set. There are $\binom{10}{2}$ ways of choosing 2 compacts out of the 10 , and there are $\binom{5}{2}$ ways of choosing two full size cars out of the 5 . So the total number of ways of choosing 2 compacts and 2 full-size cars is $\binom{10}{2} \times\binom{ 5}{2}$. Therefore,

$$
\operatorname{Pr}(2 \text { cars of each kind })=\binom{10}{2} \times\binom{ 5}{2} \times \frac{1}{\binom{15}{4}}=\frac{45 \times 10}{1365}=0.3297
$$

4. At an electronics plant, it is known from past experience that the probability is 0.86 that a new worker who has attended the company's training program will meet the production quota and that the corresponding probability is 0.35 for a new worker who has not attended the training program. It is also known that 80% of all new workers attend the training program. Find the probability that a randomly chosen new worker who meets the production quota will have attended the training program. Show your work.
[20] Let $\mathrm{M}=$ event that work meets production quota.
Let $\mathrm{T}=$ event that worker attended the training program.
We need to find $\mathrm{P}(\mathrm{T} \mid \mathrm{M})$ = prob worker worker has attended training program given he/she met quota From the problem statement we deduce:

$$
\mathrm{P}(\mathrm{M} \mid \mathrm{T})=0.86, \quad \mathrm{P}\left(\mathrm{M} \mid \mathrm{T}^{\mathrm{c}}\right)=0.35, \quad \mathrm{P}(\mathrm{~T})=0.8, \quad \mathrm{P}\left(\mathrm{~T}^{\mathrm{c}}\right)=0.2
$$

We now use Bayes rule:

$$
\mathrm{P}(\mathrm{~T} \mid \mathrm{M})=\frac{\mathrm{P}(\mathrm{M} \mid \mathrm{T}) \mathrm{P}(\mathrm{~T})}{\mathrm{P}(\mathrm{M})}
$$

To find $\mathrm{P}(\mathrm{M})$ we use the law of total probability

$$
\mathrm{P}(\mathrm{M})=\mathrm{P}(\mathrm{M} \mid \mathrm{T}) \mathrm{P}(\mathrm{~T})+\mathrm{P}\left(\mathrm{M} \mid \mathrm{T}^{\mathrm{c}}\right) \mathrm{P}\left(\mathrm{~T}^{\mathrm{c}}\right)=0.86 \times 0.8+0.35 \times 0.2=.758
$$

Therefore

$$
\mathbf{P}(\mathbf{T} \mid \mathbf{M})=\frac{0.86 \times 0.8}{.758}=\mathbf{0 . 9 0 8}
$$

5. Random variables X and Y have the probability distribution functions shown below.

Note: On this problem, points were reassigned to total 35 rather than 40.
[5] (a) What kind of random variable is X?

continuous

[7] (b) Find the probability density function of X.

$$
\mathbf{f}_{\mathbf{X}}(\mathbf{x})=\frac{\mathrm{d}}{\mathrm{dx}} \mathrm{~F}_{\mathrm{X}}(\mathrm{x})=\left\{\begin{array}{l}
\mathbf{0}, \mathbf{x}<\mathbf{0} \\
\mathbf{x}, \mathbf{0} \leq \mathbf{x} \leq \mathbf{1} \\
\frac{1}{2 \mathrm{x}^{2}}, \mathbf{1}<\mathbf{x}
\end{array}\right.
$$

[5] (c) Find $\operatorname{Pr}(X<2)$.

$$
\operatorname{Pr}(\mathbf{X}<\mathbf{2})=\mathrm{Fx}_{\mathrm{X}}(2)-\operatorname{Pr}(\mathrm{X}=2)=1-\frac{1}{2 \times 2}-0=\frac{\mathbf{3}}{\mathbf{4}}
$$

[5] (d) What kind of random variable is Y ?

$$
\text { mixed (notice that } \operatorname{Pr}(\mathrm{Y}=0)=\frac{1}{2}
$$

[8] (e) Find the probability density function of Y.

$$
\mathrm{f}_{\mathrm{Y}}(\mathrm{y})=\frac{\mathrm{d}}{\mathrm{dy}} \mathrm{~F}_{\mathrm{Y}}(\mathrm{y})=\frac{\mathbf{1}}{\mathbf{2}} \delta(\mathbf{y})+\frac{\mathbf{1}}{\mathbf{2}} \mathbf{u}(\mathbf{y})=\frac{\mathbf{1}}{\mathbf{2}} \delta(\mathbf{y})+\left\{\begin{array}{l}
\frac{\mathbf{1}}{\mathbf{2}} \mathrm{e}^{-\mathbf{y}}, \quad \mathbf{y} \geq \mathbf{0} \\
\mathbf{0}, \quad \mathbf{y}<\mathbf{0}
\end{array}\right.
$$

[5] (f) Find $\operatorname{Pr}\left(Y<\frac{1}{2}\right)$.

$$
\operatorname{Pr}\left(\mathbf{Y}<\frac{\mathbf{1}}{\mathbf{2}}\right)=\operatorname{Fr}\left(\frac{1}{2}\right)-\operatorname{Pr}\left(\mathrm{Y}=\frac{1}{2}\right)=1-\frac{1}{2} \mathrm{e}^{-1 / 2}-0=1-\frac{1}{2} \mathrm{e}^{-1 / 2}=. \mathbf{6 9 7}
$$

[125 points total]

