This is the "final" version. Revisions to the $1 / 14 / 00$ draft are marked with asterisks: ***. Problems from Leon-Garcia's book

1. 1-11, p. 22. See Problems 1-7 and 1-9 for definitions of sample mean and sample variance.
a) Sample mean: $\langle\boldsymbol{x}\rangle_{\mathbf{2 0}}=\mathbf{8 . 5 5}$, because $\mathrm{n}=20$ and $\langle\mathrm{x}\rangle_{\mathrm{n}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{x}_{\mathrm{i}}$ where $\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}$ is the data.

Sample variance: $\left\langle\mathbf{v}^{2}\right\rangle_{\mathbf{2 0}}=\mathbf{2 9 . 0 5}$, because $\left\langle\mathrm{v}^{2}\right\rangle_{\mathrm{n}}=\frac{1}{\mathrm{n}} \sum_{\mathrm{i}=1}^{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}-\langle\mathrm{x}\rangle_{\mathrm{m}}\right)^{2}$
b) The event "interarrival time is greater than 10 ms " occurs 8 times out of 20 .

Relative frequency $=\frac{\mathbf{2}}{\mathbf{5}}$
*** c) outcomes in sequence

1	2	3	4	5	7	8	10	11	12	14	16	20
$\frac{1}{20}$	$\frac{2}{20}$	$\frac{3}{20}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{1}{20}$	$\frac{2}{20}$	$\frac{1}{20}$	$\frac{2}{20}$	$\frac{3}{20}$	$\frac{1}{20}$	$\frac{1}{20}$
$\frac{1}{20}$	$\frac{3}{20}$	$\frac{6}{20}$	$\frac{7}{20}$	$\frac{8}{20}$	$\frac{9}{20}$	$\frac{10}{20}$	$\frac{12}{20}$	$\frac{13}{20}$	$\frac{15}{20}$	$\frac{18}{20}$	$\frac{19}{20}$	$\frac{20}{20}$

plot of empirical distribution function:

2. $2-1$, p. 73
a) sample space: $S=\{\mathbf{1 , 2 , 3 , 4 , 5 , 6}\}$
b) $A=\{\mathbf{2 , 4 , 6}\}$
c) $A^{\mathbf{c}}=\{\mathbf{1 , 3 , 5}\}$. This is the event "odd number of dots".
(d) Probability law: $\mathbf{P}(\mathbf{A})=\frac{|\mathbf{A}|}{\mathbf{6}}$, for any subset \mathbf{A} of \mathbf{S}, where $|A|$ denotes the size of A. Another sufficient answer is: $\mathbf{P}(\mathbf{i})=\frac{\mathbf{1}}{\mathbf{6}}, \mathbf{i}=\mathbf{1}, \ldots, \mathbf{6}$.
3. $2-3$, p. 73
a) sample space: $S=\{\mathbf{2}, \mathbf{3}, \mathbf{4}, \mathbf{5}, \mathbf{6}, \mathbf{7}, \mathbf{8}, \mathbf{9}, \mathbf{1 0}, \mathbf{1 1}, \mathbf{1 2}\}$
b) $A=\{\mathbf{2}, \mathbf{4}, \mathbf{6}, \mathbf{8}, \mathbf{1 0}, 12\}$
c) event "sum $=2$ " corresponds to $\{(1,1)\}$
event "sum = 3" corresponds to $\{(1,2),(2,1)\}$
event "sum=4" corresponds to $\{(1,3),(3,1),(2,2)\}$
and in general for $1<\mathrm{k} \leq 12$

$$
\text { event "sum }=\mathrm{k} \text { " corresponds to } \cup_{\mathrm{j}=1}^{\min (6, \mathrm{k}-1)}\{(\mathrm{j}, \mathrm{k}-\mathrm{j})\}
$$

4. $2-4$, p. 73
a) sample space $S=\{(\mathbf{1}, \mathbf{1}),(\mathbf{2}, \mathbf{1}),(\mathbf{2}, \mathbf{2}),(\mathbf{3}, \mathbf{1}),(\mathbf{3}, \mathbf{2}),(\mathbf{3}, \mathbf{3}),(\mathbf{4}, \mathbf{1}),(\mathbf{4}, \mathbf{2}),(\mathbf{4}, \mathbf{3}),(\mathbf{4}, \mathbf{4})$, $(5,1),(5,2),(5,3),(5,4),(5,5),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)\}$
b) $\{(4,1),(4,2),(4,3),(4,4)\}$
c) $\{(3,3),(4,3),(5,3),(6,3)\}$
d) $\{(6,6)\}$
5. $2-6$, p. 73
a) sample space: $\mathbf{S}=\{(\mathbf{F}, \mathbf{F}),(\mathbf{F}, \mathbf{R}),(\mathbf{F}, \mathbf{K}),(\mathbf{R}, \mathbf{F}),(\mathbf{R}, \mathbf{R}),(\mathbf{R}, \mathbf{K}),(\mathbf{K}, \mathbf{F}),(\mathbf{K}, \mathbf{R}),(\mathbf{K}, \mathbf{K})\}$
b) event $=\{(\mathbf{F}, \mathbf{F}),(\mathbf{F}, \mathbf{R}),(\mathbf{R}, \mathbf{F}),(\mathbf{R}, \mathbf{R})\}$
6. $2-7$, p. 73
a) sample space: $\mathbf{S}=\{(\mathbf{1 , 2}, \mathbf{3}),(\mathbf{2}, \mathbf{1}, \mathbf{3}),(\mathbf{3}, \mathbf{1}, \mathbf{2}),(\mathbf{1}, \mathbf{3}, \mathbf{2}),(\mathbf{2}, \mathbf{3}, \mathbf{1}),(\mathbf{3}, \mathbf{2}, \mathbf{1})\}$
b) $\mathrm{A}_{1}=\{(1,2,3),(1,3,2)\}, \quad \mathrm{A}_{2}=\{(1,2,3),\{3,2,1)\}, \quad \mathrm{A}_{3}=\{(1,2,3),(2,1,3)\}$
c) $\mathrm{A}_{1} \cap \mathrm{~A}_{2} \cap \mathrm{~A}_{3}=\{(1,2,3)\}$
which can be interpreted as "the number of each ball drawn matches the number of the draw"
d) $A_{1} \cup A_{2} \cup A_{3}=\{(1,2,3),(1,3,2),(3,2,1),(2,1,3)\}$
which can be interpreted as "at least one of the balls drawn matches the number of the draw"
*** e) $\left(A_{1} \cup A_{2} \cup A_{3}\right)^{c}=\{(3,1,2),(2,3,1)\}$
which can be interpreted as "none of the balls drawn matches the number of the draw"
7. 2-15, p. 74 (Use the axioms, not Venn diagrams, though Venn diagram may suggest what to do.)
a) sample space: $\mathbf{S}=\left\{\left(\mathbf{T}_{\mathbf{1}}, \mathbf{T}_{\mathbf{2}}\right): \mathbf{0} \leq \mathbf{T}_{\mathbf{1}}<\mathbf{T}_{\mathbf{2}} \leq \mathbf{2 4}\right\}$
b) $\mathbf{A}=\{$ awake at 9$\}=\left\{\mathrm{T}_{1} \leq 9\right.$ and $\left.\mathrm{T}_{2} \geq 9\right\}=\{$ wake up before 9$\} \cap\{$ go to sleep after 9$\}$ $=\left\{\left(\mathbf{T}_{\mathbf{1}}, \mathrm{T}_{2}\right): \mathbf{0} \leq \mathrm{T}_{\mathbf{1}}<\mathbf{9}\right.$ and $\left.\mathbf{9}<\mathrm{T}_{\mathbf{2}} \leq \mathbf{2 4}\right\}$
c) the amount of time the student is awake is $\mathrm{T}_{2}-\mathrm{T}_{1}$. the amount of time the student is asleep is 24-($\mathrm{T}_{2}-\mathrm{T}_{1}$). Therefore,
$\mathbf{B}=\{$ student asleep more than he is awake $\}=\left\{\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right) \in \mathrm{S}: 24-\left(\mathrm{T}_{2}-\mathrm{T}_{1}\right)>\mathrm{T}_{2}-\mathrm{T}_{1}\right\}$
$=\left\{\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right) \in \mathrm{S}: \mathrm{T}_{2}-\mathrm{T}_{1}<12\right\}=\left\{\left(\mathbf{T}_{\mathbf{1}}, \mathbf{T}_{\mathbf{2}}\right) \in \mathbf{S}: \mathbf{T}_{\mathbf{2}}<\mathbf{T}_{\mathbf{1}}+\mathbf{1 2}\right\}$
c) $A^{c}=\left\{\left(T_{1}, T_{2}\right) \in S:\left(T_{1}, T_{2}\right) \notin A\right\}=\left\{\left(T_{1}, T_{2}\right): 0 \leq T_{2}<T_{2} \leq 24\right.$, and $\left(\mathrm{T}_{1}>9\right.$ or $\left.\left.\mathrm{T}_{2}<9\right)\right\}$ $A^{\mathbf{c}} \cap B=B-A=\{$ student is asleep at 9 and sleeps for more than 12 hours \} sketches:

24

24

24

8. Find a probability model for the experiment described in Prob. 2-17, p. 75. Then do Problem 2-17

The sample space is $S=\{(1,1),(1,2), \ldots,(1,6),(2,1), \ldots,(2,6),(3,1), \ldots,(6,6)\}$, and the probability of each elementary event $\{(\mathrm{i}, \mathrm{j})\}$ is $1 / 36$.
a) $\mathrm{A}_{2}=\{(1,1)\}, \mathbf{P}\left(\mathbf{A}_{2}\right)=\mathrm{P}(\{(1,1)\})=\frac{\mathbf{1}}{\mathbf{3 6}}$

$$
\begin{aligned}
& \mathrm{A}_{3}=\{(1,2),(2,1)\}, \mathbf{P}\left(\mathbf{A}_{3}\right)=\mathrm{P}(\{(1,2)\})+\mathrm{P}(\{2,1\})=\frac{1}{36}+\frac{1}{36}=\frac{\mathbf{2}}{\mathbf{3 6}} \\
& \mathrm{A}_{4}=\{(1,3),(3,1),(2,2)\}, \quad \mathbf{P}\left(\mathbf{A}_{4}\right)=3 \times \frac{1}{36}=\frac{\mathbf{1}}{\mathbf{1 2}}, \mathbf{P}\left(\mathbf{A}_{5}\right)=4 \times \frac{1}{36}=\frac{\mathbf{1}}{\mathbf{9}}
\end{aligned}
$$

$$
\text { Similarly, } \mathbf{P}\left(\mathbf{A}_{6}\right)=\frac{5}{36}, \mathbf{P}\left(\mathbf{A}_{7}\right)=\frac{6}{36}, \mathbf{P}\left(A_{8}\right)=\frac{5}{36}, \mathbf{P}\left(A_{9}\right)=\frac{4}{36},
$$

$$
\mathbf{P}\left(\mathrm{A}_{10}\right)=\frac{3}{36}, \quad \mathbf{P}\left(\mathrm{~A}_{11}\right)=\frac{2}{36}, \quad \mathbf{P}\left(\mathrm{~A}_{12}\right)=\frac{1}{36}
$$

b) $\mathrm{B}=\{$ two outcomes are different $\}$. We could list the members of this set, but it's easier to list the elements of the complement:
$B^{\mathrm{c}}=\{$ two outcomes are the same $\}=\{(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)\}$
$\mathrm{P}\left(\mathrm{B}^{\mathrm{c}}\right)=\frac{6}{36}$. And therefore $\mathbf{P}(\mathbf{B})=1-\mathrm{P}\left(\mathrm{B}^{\mathrm{c}}\right)=1-\frac{6}{36}=\frac{\mathbf{3 0}}{\mathbf{3 6}}$
9. $2-19$, p. 75

There are many ways to do this problem. Here's one.
$\{$ exactly one of the events A or B ocurrs $\}=\{x \in S:(x$ is in A but not $B)$ or (x is in B but not $A)\}$

$$
=(\mathrm{A}-\mathrm{B}) \cup(\mathrm{B}-\mathrm{A}) .
$$

$\mathrm{P}(\mathrm{A}-\mathrm{B})=\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{A} \cap \mathrm{B}) \quad$ (because $\mathrm{A}-\mathrm{B}, \mathrm{A} \cap \mathrm{B}$ are disjoint, and $(\mathrm{A}-\mathrm{B}) \cup(\mathrm{A} \cap \mathrm{B})=\mathrm{A}$, so by Axiom

$$
\text { 3: } \mathrm{P}(\mathrm{~A}-\mathrm{B})+\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\mathrm{P}(\mathrm{~B}))
$$

Similarly, $\mathrm{P}(\mathrm{B}-\mathrm{A})=\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$. Finally, since $(\mathrm{A}-\mathrm{B})$ and $(\mathrm{B}-\mathrm{A})$ are disjoint

$$
\begin{aligned}
& \mathbf{P}((\mathbf{A}-\mathbf{B}) \cup(\mathbf{B}-\mathbf{A}))=\mathrm{P}(\mathrm{~A}-\mathrm{B})+\mathrm{P}(\mathrm{~B}-\mathrm{A})=\mathrm{P}(\mathrm{~A})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\
& \quad=\mathbf{P}(\mathbf{A})+\mathbf{P}(\mathbf{B})-\mathbf{2 P}(\mathbf{A} \cap \mathbf{B})
\end{aligned}
$$

10. $2-29$, p. 76

Let T denote the lifetime. Then $A=\{T>5\}$ and $B=\{T>10\}$.
a) $\mathbf{P}(\mathbf{A} \cap \mathbf{B})=P(\{T>5\} \cap\{\mathrm{T}>10\})=\mathrm{P}(\{\mathrm{T}>10\})=\mathbf{e}^{\mathbf{- 1 0}}$
$\mathbf{P}(\mathbf{A} \cup \mathbf{B})=P(\{T>5\} \cup\{T>10\})=P(\{T>5\})=\mathbf{e}^{-5}$
b) $\{$ lifetime greater than 5 but less than or equal to 10$\}=\{5<\mathrm{T} \leq 10\}$

Now, $\{\mathrm{T}>5\}=\{5<\mathrm{T} \leq 10\} \cup\{\mathrm{T}>10\}$ and the two events on the righthand side are disjoint, so $\mathrm{P}(\{\mathrm{T}>5\})=\mathrm{P}(\{5<\mathrm{T} \leq 10\})+\mathrm{P}(\{\mathrm{T}>10\})$. Therefore,

$$
\mathbf{P}(\{\mathbf{5}<\mathrm{T} \leq \mathbf{1 0}\})=\mathrm{P}(\{\mathrm{~T}>5\})-\mathrm{P}(\{\mathrm{~T}>10\})=\mathrm{e}^{\mathbf{- 5}}-\mathrm{e}^{\mathbf{- 1 0}}
$$

