Homework Set 1 Solutions DRAFT EECS 401

Problems from Leon-Garcia's book

- 1. 1-11, p. 22. See Problems 1-7 and 1-9 for definitions of sample mean and sample variance.
 - a) Sample mean: $\langle \mathbf{x} \rangle_{20} = 8.55$, because n = 20 and $\langle \mathbf{x} \rangle_n = \frac{1}{n} \sum_{i=1}^n x_i$ where $x_1, ..., x_n$ is the data. Sample variance: $\langle \mathbf{v}^2 \rangle_{20} = 29.05$, because $\langle \mathbf{v}^2 \rangle_n = \frac{1}{n} \sum_{i=1}^n (x_i - \langle \mathbf{x} \rangle_m)^2$
 - b) The event "interarrival time is greater than 10 ms" occurs 8 times out of 20. Relative frequency $=\frac{2}{5}$
- 2. 2-1, p. 73
 - a) sample space: $S = \{1, 2, 3, 4, 5, 6\}$
 - b) $A = \{2,4,6\}$
 - c) $A^c = \{1,3,5\}$. This is the event "odd number of dots".
 - (d) Probability law: $P(A) = \frac{|A|}{6}$, for any subset A of S, where |A| denotes the size of A. Another sufficient answer is: $P(i) = \frac{1}{6}$, i = 1,...,6.
- 3. 2-3, p. 73
 - a) sample space: $S = \{2,3,4,5,6,7,8,9,10,11,12\}$
 - b) A = $\{2,4,6,8,10,12\}$
 - c) event "sum = 2" corresponds to $\{(1,1)\}$ event "sum = 3" corresponds to $\{(1,2),(2,1)\}$ event "sum= 4" corresponds to $\{(1,3),(3,1),(2,2)\}$ and in general for $1 < k \le 12$ min(6,k-1)

event "sum = k" corresponds to $\bigcup_{\substack{j=1}}^{\min(6,k-1)} {(j,k-j)}$

4. 2-4, p. 73

- 5. 2-6, p. 73
 - a) sample space: $S = \{(F,F), (F,R), (F,K), (R,F), (R,R), (R,K), (K,F), (K,R), (K,K)\}$
 - b) event = $\{(F,F), (F,R), (R,F), (R,R)\}$
- 6. 2-7, p. 73
 - a) sample space: $S = \{(1,2,3), (2,1,3), (3,1,2), (1,3,2), (2,3,1), (3,2,1)\}$
 - b) $A_1 = \{(1,2,3), (1,3,2)\}, A_2 = \{(1,2,3), \{3,2,1)\}, A_3 = \{(1,2,3), (2,1,3)\}$
 - c) $A_1 \cap A_2 \cap A_3 = \{(1,2,3)\}$

which can be interpreted as "the number of each ball drawn matches the number of the draw"

d)
$$A_1 \cup A_2 \cup A_3 = \{(1,2,3), (1,3,2), (3,2,1), (2,1,3)\}$$

which can be interpreted as "at least one of the balls drawn matches the number of the draw"

e) $(A_1 \cup A_2 \cup A_3) = \{(3,1,2), (2,3,1)\}$ which can be interpreted as "none of the balls drawn matches the number of the draw"

- 7. 2-15, p. 74 (Use the axioms, not Venn diagrams, though Venn diagram may suggest what to do.)
 - a) sample space: $S = \{(T_1, T_2): 0 \le T_1 < T_2 \le 24\}$
 - b) A = {awake at 9} = { $T_1 \le 9$ and $T_2 \ge 9$ } = { wake up before 9 } \cap {go to sleep after 9} = { $(T_1, T_2): 0 \le T_1 < 9$ and $9 < T_2 \le 24$ }
 - c) the amount of time the student is awake is $T_2 T_1$. the amount of time the student is asleep is 24-(T_2 - T_1). Therefore,

B = { student asleep more than he is awake } = { $(T_1, T_2) \in S : 24 - (T_2 - T_1) > T_2 - T_1$ }

$$= \{ (T_1, T_2) \in S : T_2 - T_1 < 12 \} = \{ (T_1, T_2) \in S : T_2 < T_1 + 12 \}$$

c) $A^c = \{ (T_1, T_2) \in S : (T_1, T_2) \notin A \} = \{ (T_1, T_2) : 0 \le T_2 < T_2 \le 24, \text{ and } (T_1 > 9 \text{ or } T_2 < 9) \}$

 $A^{c} \cap B = B - A = \{$ student is asleep at 9 and sleeps for more than 12 hours $\}$

sketches:

8. Find a probability model for the experiment described in Prob. 2-17, p. 75. Then do Problem 2-17

The sample space is $S = \{(1,1), (1,2),...,(1,6),(2,1),...,(2,6),(3,1),...,(6,6)\}$, and the probability of each elementary event $\{(i,j)\}$ is 1/36.

- a) $A_2 = \{ (1,1) \}, P(A_2) = P(\{(1,1)\}) = \frac{1}{36}$ $A_3 = \{ (1,2), (2,1) \}, P(A_3) = P(\{(1,2)\}) + P(\{2,1\}) = \frac{1}{36} + \frac{1}{36} = \frac{2}{36}$ $A_4 = \{ (1,3), (3,1), (2,2) \}, P(A_4) = 3 \times \frac{1}{36} = \frac{1}{12}, P(A_5) = 4 \times \frac{1}{36} = \frac{1}{9}$ Similarly, $P(A_6) = \frac{5}{36}, P(A_7) = \frac{6}{36}, P(A_8) = \frac{5}{36}, P(A_9) = \frac{4}{36},$ $P(A_{10}) = \frac{3}{36}, P(A_{11}) = \frac{2}{36}, P(A_{12}) = \frac{1}{36}$
- b) $B = \{$ two outcomes are different $\}$. We could list the members of this set, but it's easier to list the elements of the complement:

B^c = {two outcomes are the same} = {(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)}
P(B^c) =
$$\frac{6}{36}$$
. And therefore **P**(**B**) = 1 - P(B^c) = 1 - $\frac{6}{36} = \frac{30}{36}$

9. 2-19, p. 75

There are many ways to do this problem. Here's one.

{exactly one of the events A or B ocurrs} = { $x \in S$: (x is in A but not B) or (x is in B but not A)}

$$= (\mathbf{A} - \mathbf{B}) \cup (\mathbf{B} - \mathbf{A}) \, .$$

 $P(A-B) = P(A) - P(A \cap B) \quad (because A-B, A \cap B \text{ are disjoint , and } (A-B) \cup (A \cap B) = A, \text{ so by Axiom}$ $3: P(A-B) + P(A \cap B) = P(B))$

Similarly, $P(B-A) = P(B) - P(A \cap B)$. Finally, since (A - B) and (B - A) are disjoint

 $P((A - B) \cup (B - A)) = P(A - B) + P(B - A) = P(A) - P(A \cap B) + P(B) - P(A \cap B)$

 $= \mathbf{P}(\mathbf{A}) + \mathbf{P}(\mathbf{B}) - 2\mathbf{P}(\mathbf{A} \cap \mathbf{B})$

10. 2-29, p. 76

Let T denote the lifetime. Then $A = \{T > 5\}$ and $B = \{T > 10\}$.

a) $P(A \cap B) = P(\{T > 5\} \cap \{T > 10\}) = P(\{T > 10\}) = e^{-10}$ $P(A \cup B) = P(\{T > 5\} \cup \{T > 10\}) = P(\{T > 5\}) = e^{-5}$

b) {lifetime greater than 5 but less than or equal to 10} = { $5 < T \le 10$ } Now, {T > 5} = { $5 < T \le 10$ } \cup {T > 10} and the two events on the righthand side are disjoint, so $P({T > 5}) = P({5 < T \le 10}) + P({T > 10})$. Therefore,

$$P(\{5 < T \le 10\}) = P(\{T > 5\}) - P(\{T > 10\}) = e^{-5} - e^{-10}$$