Reading Assignment: Read Sections 2.3, 2.4, 2.5.
Things to practice on your own:
Working with the axioms of probability.
Problems from Leon-Garcia's book:

1. Find a probability model for the experiment of problem 2-4, p. 73. (This was one of the cancelled parts of the previous assignment.)
2. 2-20, p. 75 .
3. Find a probabilitiy model for the experiment for problem 2-23, p. 75. Then do the problem.
4. 2-24, p. 75, except assume that $A=\{k>2\}$ and $B=\{k>4\}$ (Hint: The experiment described here is closely related to that in the previous problem.)
5. 2-29, p. 76 .

Other Problems

6. Which of the following are true statements?
(a) If $\mathrm{E} \subset \mathrm{F}$, then $\mathrm{F}^{c} \subset \mathrm{E}^{c}$.
(b) $\mathrm{F}=\mathrm{FE} \cup \mathrm{FE}$.
(c) $\mathrm{E} \cup \mathrm{F}=\mathrm{E} \cup \mathrm{FE}^{\mathrm{c}}$.
(d) If $\mathrm{E} \cap \mathrm{F}=\phi$ and $\mathrm{F} \cap \mathrm{G}=\phi$, then $\mathrm{E} \cap \mathrm{G}=\phi$.
(e) If $\mathrm{E} \subset \mathrm{F}$, then $\mathrm{E} \cap \mathrm{G} \subset \mathrm{F} \cap \mathrm{G}$.
(f) If $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$, then A and B are disjoint.
7. A 5 -sided die is tossed and the outcome is the number facing down. We are given the probabilities of the following events.

$$
\mathrm{P}(\mathrm{odd})=.7, \mathrm{P}(\{1,5\})=.4,
$$

Find the probabilities of as many of the following events as possible.

$$
\{1\},\{2\},\{3\},\{4\},\{5\},\{1,3\},\{2,4\},\{2,5\}
$$

8. Suppose A and B are subsets of a sample space S and $P(A)=1$. Use the axioms of probability to prove the following:
(a) $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=1$.
(b) $\quad \mathrm{P}(\mathrm{A} \cap \mathrm{B})=\mathrm{P}(\mathrm{B})$.
continued on the other side
9. Suppose A and B are subsets of a sample space S and $P(A)=0$. Use the axioms of probability to prove the following:
(a) $\quad \mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{B})$.
(b) $\quad \mathrm{P}(\mathrm{A} \cap \mathrm{B})=0$.
10. A certain store accepts either the American Express or the VISA credit card. It finds that when a customer enters the store, the probability is .24 that he/she carries an American Express card, .61 that he/she carries a VISA card, .11 that he/she carries both, and .45 that he she/carries a Master card. What is the probability that a customer carries a credit card that the store will accept?
11. You are on a trip from Detroit to Denver with a change of planes in Chicago. The plane from Detroit to Chicago arrives randomly between 12:00 noon and 1:00 PM. The connecting plane form Chicago leaves randomly between 1:00 PM and 2:00 PM. To make the connection, at least 30 minutes are required between planes. What is the probability that you will miss your connection? (Hint: It might be wise to make a probability model before attempting to find the answer.) Roberts, 2.25 , p. 64. (this requires an independence assumption)
